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 A B S T R A C T

The growth of Internet of Things (IoT) technologies, such as cloud computing, 5G communication, and wireless 
sensor networks, is driving a smarter and more connected future. Thousands of terabytes of data are uploaded 
to cloud servers each day for storage or computation. Due to data privacy, we cannot upload personal pictures, 
videos, locations, and medical records directly to the cloud because they will be at risk if compromised. Due to 
the untrusted nature of the cloud, data needs to be encrypted to ensure confidentiality before being outsourced 
to it. The data must first be decrypted before any operation can be performed, which can be resource-intensive 
and wasteful. Secure data transmission from sensors to an Internet host becomes a critical issue for the success 
of IoT. To address these issues, this paper introduces a lightweight certificateless signcryption scheme with an 
equality test (CLS-ET), which leverages the power of hyperelliptic curves. This scheme obtains the security goals 
of authentication, integrity, confidentiality, and non-repudiation in one logical step. Furthermore, this scheme 
enables us to verify whether two ciphertexts are encrypted with the same or different keys that contain the 
same information without decrypting them. Indistinguishability under adaptive chosen ciphertext attack (IND-
CCA2), existential unforgeability under chosen message attack (EUF-CMA), and one-wayness under adaptive 
chosen ciphertext attack (OW-CCA2) level security have been achieved by the proposed scheme in the Random 
Oracle Model (ROM). Furthermore, we compared our proposed scheme with other existing state-of-the-art 
schemes. While maintaining security and functionality, our scheme reduces computation costs for encryption, 
decryption, and testing stages, thereby improving efficiency in resource-constrained IoT-enabled Wireless Body 
Area Networks.
1. Introduction

Cloud computing is gaining popularity due to recent technological 
advancements, such as the Internet of Things (IoT), 5G communication, 
and Wireless Sensor Networks (WSNs). WSNs, often integrated as part 
of IoT, consist of dedicated sensor nodes that monitor and record 
the data and transfer collected data to a central location. A Wireless 
Body Area Network (WBAN) is a specialized type of WSN designed 
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for healthcare monitoring. It serves as a core component in numerous 
telehealth applications, including personalized healthcare and home-
based mobile health services. WBANs can also utilize an equality test to 
evaluate a patient’s health status [1]. An overview of a working WBAN 
with an equality test server is shown in Fig.  1. Patients are equipped 
with various sensors to collect real-time or continuous physiological 
health data, such as blood pressure, glucose levels, breathing rate, 
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 data mining, AI training, and similar technologies. 
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Fig. 1. Standard WBAN scenario.

electrocardiogram (ECG), and motion [2–4]. This data is then wirelessly 
transferred to an IoT device, where it is encrypted and sent to a cloud 
server for storage. The cloud server, which also receives encrypted data 
from medical institutions, performs an equality test to determine the 
patient’s health status. If the test indicates equality, the patient’s status 
is considered normal; if not, the patient’s status is deemed abnormal. 
This process not only enhances the quality and efficiency of healthcare 
delivery but also reduces treatment costs.

Globally, cloud-based systems are widely used to manage and pro-
cess vast amounts of data. In the e-healthcare sector, cloud computing 
has become the most common solution for managing and facilitating 
communication among IoT devices [5]. Cloud servers are utilized to 
store large volumes of data and perform computations on it. How-
ever, due to the untrusted nature of cloud environments, directly 
uploading personal data such as pictures, videos, location informa-
tion, and medical records poses significant risks if the cloud server is 
compromised.

Data security and efficiency are significant challenges in resource-
constrained IoT-enabled Wireless Body Area Networks (WBANs). The 
confidentiality of data can be achieved by applying encryption before 
outsourcing it to the cloud. However, there is a limitation in data recov-
ery because of the ‘‘all-or-nothing’’ decryption characteristic [6]. Most 
IoT devices are battery-powered with limited storage and processing ca-
pabilities, which exacerbates these challenges. To improve this process, 
Boneh [7] introduced the notion of PKE-KS, which integrates keyword 
search with public key encryption and retrieves their information with-
out decrypting the data. Using keyword search, the cloud can perform 
a test to check whether two ciphertexts carry the same information or 
not. However, this approach has a drawback as it does not work when 
two ciphertexts are encrypted with different public keys. Unfortunately, 
this scheme becomes unsuitable for cloud searching, due to the hetero-
geneous nature of IoT data. To address this issue, Yang [8] proposed the 
notion of public key encryption with an equality test (PKE-ET), which 
supports search operations among ciphertexts encrypted with both the 
same and distinct public keys. This method is more suitable for the 
heterogeneous nature of IoT data. Nevertheless, the scheme is built un-
der the framework of a public key infrastructure (PKI), which requires 
digital certificates to verify the validity of public keys. To eliminate 
the need for certificates and enhance efficiency, Ma [9] introduced 
the first Identity-Based Encryption with Equality Test (IBEET). Building 
on this foundation, researchers have developed various schemes to 
address emerging security challenges. In response to threats posed 
by quantum computers, Z. Yang [10] proposed a lattice-based IBEET 
scheme to enhance cloud service security against quantum threats. 
Additionally, in response to the COVID-19 pandemic, Ramadan [11] 
introduced the WBAN-19 scheme for telemedicine systems, designed to 
secure telemedicine systems and reduce the widespread transmission of 
contagious diseases.

With the growing prevalence of IoT-enabled Wireless Sensor Net-
works (WSNs), the usage of cloud computing is also increasing. Due 
to the untrusted nature of the cloud, data must be encrypted before 
being outsourced. While Identity-Based Encryption (IBE) can elimi-
nate the need for certificates, practical IBE schemes often rely on 
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bilinear pairings as a mathematical tool [12,13]. However, bilinear 
operations are significantly more computationally expensive than point 
multiplication, which poses a challenge given the resource-constrained 
nature of IoT-enabled WSNs. Therefore, there is a pressing need to 
improve the efficiency of existing schemes in terms of computational 
cost and message overhead. In this paper, a Lightweight Certificateless 
Signcryption scheme with equality test for WBAN (CLS-ET) is proposed 
to address these challenges. Our scheme relies on hyperelliptic curve 
cryptography (HECC), which eliminates the need for pairing operations 
during the signcryption and unsigncryption stages. The experimental 
findings indicate that the bilinear pairing computation cost is much 
higher as compared to both the Rivest, Shamir, and Adleman (RSA) and 
elliptic curve cryptography (ECC) methods by 13.65 ms and 13.93 ms, 
respectively [14]. Furthermore, RSA’s computation cost is higher than 
that of HECC by 14.42 ms [15]. HECC, with an 80-bit key size, provides 
a security level equivalent to a 1024-bit RSA key and a 160-bit ECC key, 
but with lower computational costs and communication overhead.

1.1. Related work

The growth of Internet of Things (IoT) technologies, including cloud 
computing and wireless sensor networks, is driving the creation of 
a smarter and more connected future. However, data privacy is a 
concern, and users often encrypt sensitive information before storing it 
in the cloud. Most IoT devices are resource-constrained, when it comes 
to memory, storage, energy, and processing power, and are mostly 
battery-powered. Various schemes have been put forward to guarantee 
the quick retrieval of encrypted data from the cloud.

In an effort to solve this problem, Boneh [7] proposed the first 
public key encryption scheme with the functionality of keyword search. 
Sadly, this technique becomes inconvenient for cloud searching, due to 
the diverse nature of IoT data. To solve this issue, Yang [8] proposed 
public key encryption with an equality test (PKE-ET) scheme. However, 
these schemes are constructed under a public key infrastructure (PKI), 
requiring digital certificates to confirm the validity of the public keys. 
The certificate management cost incurred by PKI is unfavorable for 
resource-constrained IoT-enabled WSNs with limited storage and com-
puting capacity. This is because the demand for public key certificates 
(involving storage, distribution, and revocation) is high, and additional 
time is spent verifying a public key before it can be used.

Shamir [16] proposed an Identity-based encryption (IBE) scheme 
to eliminate certificate management. In IBE, each user uses their own 
identity (Name, Email, EMI number, etc.) as the public key. In order to 
ensure data confidentiality and achieve efficiency, Ma [9] presented 
the first identity-based encryption with the functionality to perform 
an equality test (IBEET) scheme. But this scheme faces user revoca-
tion and key escrow problems. Afterward, numerous studies regarding 
IBBEET have been published in the literature [17–19]. Most notably, 
Ramadan [20] proposed an ID-based encryption scheme, IBEET-RSA for 
Wireless Body Area Networks (WBANs). The scheme is built on RSA and 
has the security of OW-ID-CCA in the RO model. It presents a promising 
solution for ensuring medical data security and privacy in WBANs.

Key escrow and user revocations are the inherent problems with 
ID-based cryptography (IBC). In an effort to solve the user revocation 
problem, Sun [21] proposed a scheme that provides user revocation 
and consumes less bandwidth, storage, and other resources because 
both the ciphertext and key are short. The security of the scheme 
is accordant with the Chinese SM9 encryption standard and has the 
hardness assumption of the BDH (Bilinear Diffie–Hellman) problem. 
Subsequently, another scheme called RIBEET for wireless body area 
networks (WBANs) was proposed [22]. To solve the user key escrow 
problem, Elhabob [23] proposed CL-PKE-ET scheme for the Internet of 
Vehicles (IoV) environment. The scheme was based on the original CL-
PKC scheme proposed by Al-Riyami [24]. The user’s private key is split 
into two parts to resolve the key-escrow problem. Key generator centers 
(KGCs) create the first part, while users create the second part. The user 
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can make the complete private key by combining them. The scheme has 
demonstrated IND-CCA and OW-CCA level security in the RO model. El-
habob [25] further proposed a pairing-free CL-PKE-ET protocol, which 
offers superior performance compared to its predecessor scheme. Ad-
ditionally, Tian [26] proposed a lightweight certificateless encryption 
scheme with keyword search and equality test (CLAE-KS&ET), pro-
viding enhanced security against message recovery attacks for cloud 
environments while supporting secure ciphertext retrieval and compari-
son without decryption. However, most existing schemes are unsuitable 
for applications within IoT-enabled Wireless Sensor Networks (WSNs) 
due to their high computational costs, message overhead, and storage 
demands.

1.2. Contributions

1. We propose a novel Certificateless Signcryption scheme with 
Equality Test (CLS-ET) specifically designed for Wireless Body 
Area Networks (WBANs). In this scheme, the cloud server can 
use the ciphertext form of the patient’s health and medical 
institution’s data to perform an equality test and check whether 
the patient’s status is normal or abnormal, indicating the need 
for medical attention.

2. Based on the syntax of [27], we propose a novel framework 
and concrete construction for the CLS-ET scheme specifically 
designed for WBANs. Our construction is optimized to meet the 
unique requirements of WBANs within IoT environments.

3. The proposed scheme employs Hyperelliptic Curve Cryptography 
(HECC) with an 80-bit key size, offering significant efficiency 
improvements over traditional elliptic curve cryptography (ECC) 
and bilinear pairing methods, which require larger key sizes 
160-bits and 256-bits, respectively.

4. Our scheme effectively addresses the inherent key escrow issue 
associated with Identity-Based Encryption (IBE), enhancing the 
security and practicality of the proposed system.

5. We provide rigorous security proofs and analysis, demonstrating 
that our scheme achieves IND-CCA2, EUF-CMA, and OW-CCA2 
levels of security within the Random Oracle Model (ROM).

6. Through extensive evaluation, we show that the proposed CLS-
ET scheme outperforms existing state-of-the-art schemes in terms 
of computational efficiency and message overhead, while main-
taining robust security. This makes our scheme particularly well-
suited for resource-constrained IoT-enabled WSNs.

1.3. Paper organization

The rest of this paper is organized as follows. Preliminaries are 
given in Section 2. The framework and security model are presented 
in Section 3. The concrete construction of the scheme is detailed 
in Section 4. A security analysis is provided in Section 5. Details 
of the test environment and a comparative analysis of our proposed 
scheme against other existing state-of-the-art schemes are presented in 
Sections 6 and 7, respectively. Conclusions are drawn in Section 8.

2. Preliminaries

2.1. Hyperelliptic curve

The hyperelliptic curve (HEC) is a special class of algebraic curves 
introduced by Koblitz [28]. HEC can be considered a generalized or 
shorter key version of [29]. Unlike ECC, the points on HEC are not 
derived from a group [30]. In HEC, the additive Abelian group is 
computed from the divisor, which results in smaller parameters and 
key sizes compared to ECC. Despite these smaller parameters, HEC 
can perform all essential operations required in a public-key cryptosys-
tem, including signature generation, encryption, decryption, and key 
exchange. Importantly, the hyperelliptic curve provides the same level 
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of security as RSA, bilinear pairing, and elliptic curves, making it par-
ticularly well-suited for resource-constrained IoT environments [31].

A curve with a genus value of 1 is commonly referred to as an 
elliptic curve (EC). In contrast, hyperelliptic curves are defined over 
curves with a genus greater than 1 [32]. For instance, a curve with 
a genus of 1 over a finite field q, the group order of the field |q|

requires operands of length 160 bits. This requirement implies that 
g. log2 𝑞 ≈ 2160, where g represents the genus of the curve within 
the finite field q. Similarly, a curve with a genus of 2 is called a 
hyperelliptic curve (HEC) and requires 80-bit long operands within the 
field q, where g ⋅ log2 𝑞 ≈ 280.

HEC is a special type of non-singular and projective curve. The 
hyperelliptic curve defined over the field q can be represented by 
points (w, v) ∈ q, which satisfy the following equation: 

𝐻𝐸𝐶 ∶ v2 + ℎ(w)v = 𝑓 (w) (1)

where 𝑓 and ℎ are both polynomials in the field q with deg(𝑓 ) = 2 𝑔+1
and deg(ℎ) ≤ 𝑔. The curve also satisfies both Eq.  (1) and the partial 
derivative equations ℎ′(w) = 0 and ℎ′(w)v + 𝑓 ′(w) = 0.

2.2. Complexity assumptions

We have considered the following assumptions while conducting the 
analysis:

• q is a finite field with the order 𝑞, where 𝑞 ≈ 280.
•  is a divisor of the hyperelliptic curve (HEC) selected from 
the Jacobian group, which is the finite sum of points p𝑖 ∈ HEC
as:

 =
∑

p𝑖∈HEC

m𝑖p𝑖 (2)

where m𝑖 ∈ q.

Definition 1. Given (, 𝐴 = 𝑎 ⋅ , 𝐵 = 𝑏 ⋅ ) ∈  (), compute 
𝑍 = 𝑎𝑏 ∈ .

The HC-CDHP assumption holds if: No probabilistic polynomial-
time (PPT) algorithm can solve the HC-CDHP by computing 𝑎𝑏 from 
(, 𝑎, 𝑏) with non-negligible probability.

Definition 2. Suppose 𝜕 ∈ {1, 2, 3, 4, 5,… , 𝑞 − 1} is randomly picked. 
The value of 𝛬 is calculated using Eq.  (3). 
𝛬 = 𝜕 ⋅ (3)

The probability of finding the value of 𝜕 from 𝛬 is negligible due to 
the Hyperelliptic Curve Discrete Logarithm Problem (HE-CDLP).

3. Framework and security model of CLS-ET

The syntax of our scheme, ‘‘A Lightweight Certificateless Signcryp-
tion scheme with Equality Test (CLS-ET) for WBANs’’, is based on the 
‘‘Efficient CL-PKC-ET for IoV’’ scheme [27]. The scheme consists of 
eight algorithms: Setup, Private Number Generation, Partial Private 
Key Generation, Full Key Generation, Certificateless Signcryption, Trap-
door, Test, and Certificateless Unsigncrypt. The first three roles, Setup, 
Private Number Generation, and Partial Private Key Generation are 
handled by the Key Generation Center (KGC), which is responsible for 
performing these tasks. The second set of roles is assigned to the users, 
who can perform Full Key Generation, Signcryption, Unsigncryption, 
and Trapdoor generation. The final role is assigned to the Medical 
Record Management Server (MRMS), a cloud server responsible for 
storing and maintaining medical records from patients and medical 
institutions, as well as performing Equality Tests on the signcrypted 
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data sent by patients and medical institutions. The functioning of the 
scheme is illustrated in Fig.  2, with the data flow described as follows: 
The KGC initializes the system parameters and distributes them to all 
entities. Each user sends their identity to the KGC (See step 1 ), after 
which the KGC generates and sends the partial private key to each user 
(See step 2 ). The user then generates a full private key from this partial 
key. Patients are equipped with various sensors that collect real-time 
medical data and transfer it to a smart device/IoT (See step 3 ). The 
collected data is then signcrypted and sent to the MRMS server (See 
step 4 ). The user generates a trapdoor using their private key and 
sends it to the MRMS along with the signcrypted data (See step 5 ). 
Similarly, medical institutions also send signcrypted data along with 
a trapdoor to the MRMS for the Equality Test. The MRMS has two 
primary tasks: record management and performing Equality Tests. It 
receives the signcrypted data and trapdoors from patients and medical 
institutions and checks if the equality holds (See step 6 ). It then sends 
the result, either ‘‘true’’ or ‘‘false’’, to the Medical Institution (See step 
7 ). If the result is ‘‘true’’, the patient’s status is normal; if ‘‘false’’, the 
patient’s status is abnormal and requires medical attention. In the case 
of a ‘‘false’’ result, the MRMS sends the patient’s signcrypted data to 
the Medical Institution for further analysis of the patient’s health (See 
step 8 ).

Table  1 lists notable notations used in this scheme, and the descrip-
tions of each of these algorithms are provided below.

1. Setup: In this phase, the KGC randomly picks its master se-
cret key 𝛼 and publishes the system parameters params =
{HEC,𝑞 ,,1,2,3,4}.

2. Private Number Generation: In this phase, the KGC receives 
the users’ IDs, randomly selects 𝛽.

3. Partial Private Key Generation: This phase is performed by the 
KGC. It takes as input the user’s identity 𝐼𝐷𝑢 along with other 
parameters, and then returns and sends the partial private key 
𝜔 to all users according to their IDs via a secure channel.

4. Full Key Generation: This algorithm is performed by the users. 
Each user receives their corresponding partial private key 𝜔 from 
the KGC, computes the full private and public keys, and then 
further checks the validity of the public and private keys.

5. Certificateless Signcryption: The sender executes this algo-
rithm. It utilizes the sender’s private key 𝑃𝑟𝑐𝑙𝑠, system param-
eters 𝑝𝑎𝑟𝑎𝑚𝑠, the recipient’s public encryption key 𝐸𝑃𝑏𝑐𝑙𝑢𝑠, and 
the message 𝑀 to produce the signcrypted output 𝛺. The al-
gorithm integrates several security elements such as confiden-
tiality, integrity, non-repudiation, and authentication into one 
logical process. The sender creates a ciphertext intended for the 
receiver.

6. Trapdoor: This algorithm is performed by the users. The algo-
rithm takes input 𝑃𝑟𝑢 and generates trapdoor 𝑇𝑢 as output.

7. Test: The MRMS Server executes this algorithm by taking two 
pairs of ciphertext-trapdoor (𝐶𝑇𝐴, 𝑇𝐴) and (𝐶𝑇𝐵 , 𝑇𝐵) from two 
users with 𝐼𝐷𝐴 and 𝐼𝐷𝐵 , respectively. If the equality holds, it 
returns an output of 1; otherwise, it returns 0.

8. Certificateless Unsigncrypt: This algorithm is performed by the 
receiver. It takes as input the signcrypted ciphertext 𝛺, public 
system parameters 𝑝𝑎𝑟𝑎𝑚𝑠, the receiver’s private key 𝑃𝑟𝑐𝑙𝑢𝑠 and 
returns the original message 𝑀 . If 𝛺 is not invalid, it will return 
the symbol ⊥.

3.1. Security model

This section establishes the security models for the proposed CLS-ET 
scheme, specifically regarding the IND-CCA2, EUF-CMA, and OW-CCA2 
security. Here,  refers to the challenger, while 1 and 2 represent 
Type-I and Type-II adversaries involved. Let us play some games be-
tween Challenger  and Adversary 1 and 2 to prove the security of 
our proposed scheme.
4 
Fig. 2. Architecture of a lightweight certificateless signcryption scheme with 
equality test for the WBANs.

Table 1
Notation used in this scheme.
 Notation Meaning  
 𝑝𝑎𝑟𝑎𝑚𝑠 System parameters  
 KGC Key Generation Center  
 𝑖 𝑖th one-way hash function, where 𝑖 = 1, 2, 3  
 𝑞 Finite field 𝑞 of order 𝑞  
 𝑞 Large prime number  
 𝛼 The secret key of KGC  
  HEC’s Divisor  
  The cyclic group of prime order 𝑞  
 non Fresh nonce value  
 𝐼𝐷𝑐𝑙𝑠, 𝐼𝐷𝑐𝑙𝑢𝑠 Identity of the Sender (signcrypter) and receiver 

(unsigncrypter) 
 

 𝑃𝑏𝑐𝑙𝑠, 𝑃𝑏𝑐𝑙𝑢𝑠 Public key of the Sender (signcrypter) and receiver 
(unsigncrypter) 

 

 𝑃𝑟𝑐𝑙𝑠, 𝑃𝑟𝑐𝑙𝑢𝑠 Private key of the Sender (signcrypter) and receiver 
(unsigncrypter) 

 

 𝐶𝑇 𝑢, 𝑇𝑢 Pairs of ciphertext-trapdoor from users  
 𝑀 Message  
 𝛺 Ciphertext (signcrypted message)  
 ⊥ Decryption failure  

Definition 3. It is possible for a signcryption scheme to achieve IND-
CCA2, if there exists 1 adversary, who can query 1, 2, 3, 4, 
setup setup, private number generation PNG, partial private key gen-
eration PPKG, full key generation FKG, certificateless-signcryption 
cls, and certificateless-unsigncryption clus oracles for ℎ1, ℎ2, ℎ3, 
ℎ4, 𝑠𝑒𝑡𝑢𝑝, 𝑃𝑁𝐺, 𝑃𝑃𝐾𝐺, 𝐹𝐾𝐺, 𝑐𝑙𝑠, and 𝑐𝑙𝑢𝑠, respectively, who 
is capable of winning the IND-CCA2 game in time 𝜖 with a success 
probability 𝜏 in a probabilistic polynomial time.

• IND-CCA2 Game:
Setup: The setup algorithm is run by the challenger  and takes 
the security parameter 𝜓 as input. 𝐶 picks a random number 
as a secret key 𝑎 = 𝛼. Then pick four hash functions 1, 2, 
3, and 4. Finally,  send some public parameters, such as 
𝜓 ∈ {HEC,𝑞 , 𝐺,1, 2,3, 4} to 1.
Phase 1: 1 issues 𝑖 hash queries as (𝑖 = 1, 2, 3, 4), setup setup, 
private number generation PNG, partial private key generation 
PPKG, full key generation FKG, certificateless-signcryption cls, 
and certificateless unsigncryption clus queries for sender iden-
tity ID𝑠 and randomly chosen message 𝑀 . In response to these 
queries,  generates a private number, partial private key, and full 
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key for sender identity ID𝑠 and also answers the certificateless-
signcryption and certificateless unsigncryption queries and sends 
the results to 1.
Challenge: 1 chooses two equal lengths but dissimilar types of 
messages 𝑀1 and 𝑀2 and the sender’s identity ID′

𝑠 and sends 
it to .  runs private number generation, partial private key 
generation, and full key generation algorithms. Then randomly 
selects a bit 𝑓 ∈ {0, 1} to produce certificateless-signcryption 
ciphertext 𝛺′ and sends it to 1. Note that 𝑀1, 𝑀2, and ID′

𝑠
should be fresh and not from the pair (𝑀1, ID′

𝑠) or (𝑀2, ID′
𝑠).

Phase 2: In this phase, 1 makes the same queries as aforemen-
tioned in phase 1, except the certificateless unsigncryption query 
clus for the targeted ciphertext 𝛺′.
Guess: 1 outputs a bit 𝑓 ′ ∈ {0, 1}, and if 𝑓 ′ = 𝑓 , then 1 has 
succeeded. If 𝑓 ′ ≠ 𝑓 , then the algorithm terminates without any 
output. The advantage of 1 winning the game is negligible.

Definition 4. It is possible for a signcryption scheme to achieve EUF-
CMA, if there exists 1 adversary, who can query 1, 2, 3, 4, setup 
setup, private number generation PNG, partial private key genera-
tion PPKG, full key generation FKG, and certificateless-unsigncryption 
clus oracles for ℎ1, ℎ2, ℎ3, ℎ4, 𝑠𝑒𝑡𝑢𝑝, 𝑃𝑁𝐺, 𝑃𝑃𝐾𝐺, 𝐹𝐾𝐺, and 
𝑐𝑙𝑢𝑠, respectively, who is capable of winning the EUF-CMA game in 
time 𝜖 with a success probability 𝜏 in a probabilistic polynomial time.

• EUF-CMA Game:
Setup: In this phase,  executes similar tasks as performed in the 
Game IND-CCA2 setup phase.
Attack: 1 issues setup, PNG, PPKG, FKG, and cls queries 
for sender identity ID𝑠 and randomly chosen message 𝑀 . In 
response to these queries,  generates a private number, partial 
private key, and full key for sender identity ID𝑠 and also runs 
the certificateless-signcryption algorithm to generate ciphertext 
𝛺, and sends it to 1.
Forgery: In response to the message 𝑀 ′, 1 outputs a
certificateless-signcrypted ciphertext and message pair (𝛺′,𝑀 ′). 
For a sender with identity ID′

𝑠 and message 𝑀 ′, 1 can win 
the game if 𝛺′ is a valid certificateless-signcrypted ciphertext, 
provided that the sender’s private key and a tuple (𝑀 ′, ID′

𝑠) have 
not been accessed before through any query.

Definition 5. In the proposed WBAN-19 scheme, the plaintext remains 
secure even when the adversary possesses the trapdoor and the cor-
responding ciphertext. Thus, the scheme is considered one-wayness 
under adaptive chosen ciphertext attack (OW-CCA2) in the random 
oracle model, provided the advantage of adversary 2 in distinguishing 
between messages is negligible

• OW-CCA2 Game:
Setup: The setup algorithm is run by the challenger  and takes 
the security parameter 𝜓 as input. 𝐶 picks a random number 
as a secret key 𝑎 = 𝛼. Then pick four hash functions 1, 2, 
3, and 4. Finally,  send some public parameters, such as 
𝜓 ∈ {HEC,𝑞 , 𝐺,1, 2,3, 4} to 2.
Phase 1: 2 issues 𝑖 hash queries as (𝑖 = 1, 2, 3, 4), setup 
setup, private number generation PNG, partial private key gener-
ation PPKG, full key generation FKG, Trapdoor-Queries trapdoor, 
and certificateless unsigncryption clus queries for sender iden-
tity ID𝑠 and randomly chosen message 𝑀 . In response to these 
queries,  generates a private number, partial private key, and 
full key for sender identity ID𝑠 and also answers the trapdoor and 
certificateless unsigncryption queries and sends the results to 2.
Challenge: The challenger, 𝐶, randomly selects a plaintext mes-
sage 𝑀 ′ ∈ 𝑀 and computes the corresponding ciphertext tuple 
𝛺 using the signcrypt algorithm. The ciphertext tuple 𝛺 is then 
sent to the adversary  .
2
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Phase 2: The challenger answers similarly to Phase 1; however, 
during this phase, 2 is restricted from making queries related to 
the secret key and the plaintext message.
Guess: The adversary 2 outputs a guess 𝑀 ′ for the original 
plaintext message 𝑀 .

4. Proposed scheme

In this section, an efficient Certificateless Signcryption scheme with 
the functionality of an equality test for WBAN is introduced. The 
deployment of our scheme is shown in Fig.  3. A detailed mathematical 
explanation of each algorithm employed in the scheme is provided 
below.

• Setup: In this phase, the Key Generation Center (KGC) picks a 
random number as a secret key 𝛼 ∈ {1, 2, 3,… , 𝑞 − 1}. Then, 
KGC freely creates a set of public parameters, such as params =
{HEC,𝑞 ,,1,2,3,4} and 1,2,3,4 are random one-
way hash functions defined as: 1 ∶ {0, 1}′ → 𝑞 , 2 ∶  →

{0, 1}𝑘, 3 ∶  → {0, 1}𝑛, and 4 ∶ {0, 1}′ → 𝑞 , where 
𝑘 = ⌈log2 𝑞⌉. Let 𝛷 ∶ 𝑞 → {0, 1}𝑘 be the function that maps 
an integer to its binary representation padded to length 𝑘, and 
𝛷−1 ∶ {0, 1}𝑘 → 𝑞 as its inverse.

• Private Number Generation: In this phase, KGC receives the 
User’s IDs and randomly selects 𝛽 ∈ {1, 2, 3, … , 𝑞−1} as a private 
number.

• Partial Private Key Generation: In this phase, KGC calculates 
𝜔 = 𝛼 ⋅ 𝛽 (mod 𝑞) as a partial private key, and sends it to all the 
users according to their IDs through a secure channel.

• Full Key Generation: Users receive their corresponding partial 
private key 𝜔, and then it picks two random number 𝑥, 𝑦 ∈
{1, 2, 3,… , 𝑞−1} as its private key and calculates 𝛥 = 𝑦 ⋅𝜔 (mod 𝑞)
after that it calculate their public encryption key EPb𝑢 = 𝑦 ⋅ and 
their full public and private keys as follows:
Pb𝑢 = 1(𝜔∥ID𝑢) ⋅ + 𝑥 ⋅

and

Pr𝑢 = 𝑥 ⋅ Pb𝑢.

The private key pair = (𝑦,Pr𝑢), and the public key pair =
(EPb𝑢,Pb𝑢) of the user.

• Certificateless Signcryption: In this phase, the certificateless 
signcrypter takes as input its own private key Pr𝐴, the receiver’s 
encryption public key EPb𝐵 , as well as a plaintext message 𝑀 . It 
outputs a signcrypted tuple 𝛺 = {𝑈, 𝛤 , 𝑌 , 𝜇, 𝑉 } by following these 
steps.
First, this algorithm randomly picks two numbers 𝑠𝑛, 𝜂𝑛 ∈
{1, 2, 3,… , 𝑞 − 1} and computes:
Compute 𝑚𝑛 = 4(𝑀𝑛)

𝑅𝑛 = (𝜂𝑛 ⋅ 𝛥) ⋅ Pb𝑛

𝑍𝑛 = 𝜂𝑛 ⋅ EPb𝐵

𝑌𝑛 = 4(𝑀𝑛) ⋅ 𝛥 ⋅ Pr𝐴

𝜇𝑛 = 𝜂𝑛 ⋅ 𝜔 (mod 𝑞)

𝑈𝑛 = 𝜂𝑛 ⋅

𝛤𝑛 = 𝛷(𝜂 ⋅ 𝑚𝑛)⊕2(𝑠𝑛 ⋅ 𝑅𝑛)

𝑉𝑛 = (𝑀𝑛∥nonce)⊕3(𝑌𝑛)⊕3(𝑍𝑛)

After making all the calculations, the certificateless signcrypter 
sends the tuple 𝛺𝑛 = {𝑈𝑛, 𝛤𝑛, 𝑌𝑛, 𝜇𝑛, 𝑉𝑛} through a secure channel 
to the certificateless unsigncrypter.
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• Certificateless Unsigncryption: In this phase, the certificateless 
unsigncrypter receives the tuple 𝛺𝑛 = {𝑈𝑛, 𝛤𝑛, 𝑌𝑛, 𝜇𝑛, 𝑉𝑛} and takes 
its own private key 𝑦𝐵 , and calculates:
𝑍′
𝑛 = 𝑦𝐵 ⋅ 𝑈𝑛

If 𝑍′
𝑛 = 𝑍𝑛, then calculate:

𝑀 ′ = 𝑉 ⊕3(𝑌 )⊕3(𝑍′)

Otherwise, abort this algorithm.
• Trapdoor: For the given (𝐶𝑇𝐴, 𝐼𝐷𝐴) and (𝐶𝑇𝐵 , 𝐼𝐷𝐵). The trap-
doors for users A and B are calculated by this algorithm, as 
follows:

𝑇𝐴 = 𝑠𝐴 ⋅ Pr𝐴 and 𝑇𝐵 = 𝑠𝐵 ⋅ Pr𝐵 ,

where 𝑠𝐴 and 𝑠𝐵 are the random numbers chosen during signcryp-
tion by A and B, respectively.

• Test: For the given (𝐶𝑇𝐴, 𝑇𝐴) and (𝐶𝑇𝐵 , 𝑇𝐵). The entity 𝐸𝑇  runs 
this algorithm as follows:

1. Compute: 𝛩𝐴 = 2(𝜇𝐴 ⋅ 𝑇𝐴) and 𝛩𝐵 = 2(𝜇𝐵 ⋅ 𝑇𝐵).
2. Compute 𝜒 ′

𝐴 = 𝛤𝐴 ⊕𝛩𝐴 and 𝜒 ′
𝐵 = 𝛤𝐵 ⊕𝛩𝐵 .

3. Compute 𝜒𝐴 = 𝛷−1(𝜒 ′
𝐴) and 𝜒𝐵 = 𝛷−1(𝜒 ′

𝐵).
4. 𝐸𝑇  checks if 𝜒𝐵 ⋅ 𝑈𝐴 = 𝜒𝐴 ⋅ 𝑈𝐵 holds. If the equivalence 
holds, then the server will return 1. If not, the server will 
return 0.

• Correctness: The proposed scheme demonstrates consistency 
through the following proof:
(1) Signcryption:
𝑍′
𝑛 = 𝑦𝐵 ⋅ 𝑈𝑛

= 𝑦𝐵 ⋅ (𝜂𝑛 ⋅) = (𝜂𝑛 ⋅ 𝑦𝐵) ⋅ = 𝑍𝑛
and finally, calculates 𝑀 ′

𝑛:

𝑀 ′
𝑛 = 𝑉𝑛 ⊕3(𝑌𝑛)⊕3(𝑍′

𝑛)

= (𝑀𝑛∥nonce)⊕3(𝑌𝑛)⊕3(𝑍𝑛)⊕3(𝑌𝑛)⊕3(𝑍′
𝑛)

=𝑀𝑛∥nonce

since 𝑍′
𝑛 = 𝑍𝑛, so 3(𝑍′

𝑛) = 3(𝑍𝑛).
(2) Equality Test:
𝜒 ′
𝑛 = 𝛤𝑛 ⊕2(𝜇𝑛 ⋅ 𝑇𝑛)

= 𝛷(𝜂 ⋅ 𝑚)⊕2(𝑅𝑛 ⋅ 𝑠𝑛)⊕2(𝜇𝑛 ⋅ 𝑇𝑛)

= 𝛷(𝜂 ⋅ 𝑚)⊕2(𝑃𝑏𝑛 ⋅ 𝜂𝑛 ⋅ 𝛥 ⋅ 𝑠𝑛)⊕2(𝜂𝑛 ⋅ 𝜔 ⋅ 𝑠𝑛𝑃𝑟𝑛)

= 𝛷(𝜂 ⋅ 𝑚)⊕2(𝑃𝑏𝑛 ⋅ 𝜂𝑛 ⋅ 𝑦 ⋅ 𝜔 ⋅ 𝑠𝑛)⊕2(𝜂𝑛 ⋅ 𝜔 ⋅ 𝑠𝑛 ⋅ 𝑦 ⋅ 𝑃𝑏𝑛)

= 𝛷(𝜂 ⋅ 𝑚)⊕2(𝑃𝑏𝑛 ⋅ 𝜂𝑛 ⋅ 𝑦 ⋅ 𝜔 ⋅ 𝑠𝑛)⊕2(𝑃𝑏𝑛 ⋅ 𝜂𝑛 ⋅ 𝑦 ⋅ 𝜔 ⋅ 𝑠𝑛)

= 𝛷(𝜂 ⋅ 𝑚)

where 𝑚𝑛 = 4(𝑀𝑛), and since 𝑠𝑛 ⋅ 𝑅𝑛 = 𝜇𝑛 ⋅ 𝑇𝑛 (as shown in 
analysis, due to commutative scalars), 2(𝑠𝑛 ⋅ 𝑅𝑛) = 2(𝜇𝑛 ⋅ 𝑇𝑛), 
so:

𝜒 ′
𝑛 = 𝛷(𝜂𝑛 ⋅ 𝑚𝑛)⊕ 0 = 𝛷(𝜂𝑛 ⋅ 𝑚𝑛)

Then,

𝜒𝑛 = 𝛷−1(𝜒 ′
𝑛) = 𝜂𝑛 ⋅ 𝑚𝑛

Now, check:
𝜒𝐵 ⋅ 𝑈𝐴 = (𝜂𝐵 ⋅ 𝑚𝐵) ⋅ (𝜂𝐴 ⋅) = (𝜂𝐴𝜂𝐵𝑚𝐵) ⋅

𝜒𝐴 ⋅ 𝑈𝐵 = (𝜂𝐴 ⋅ 𝑚𝐴) ⋅ (𝜂𝐵 ⋅) = (𝜂𝐴𝜂𝐵𝑚𝐴) ⋅
Equality holds if 𝜂𝐴𝜂𝐵𝑚𝐵 = 𝜂𝐴𝜂𝐵𝑚𝐴, so 𝑚𝐵 = 𝑚𝐴, i.e., 4(𝑀𝐵) =
4(𝑀𝐴), implying 𝑀𝐴 = 𝑀𝐵 with high probability if 4 is 
collision-resistant.
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5. Security analysis

In the random oracle model, we can achieve IND-CCA2, EUF-CMA, 
and OW-CCA2 using a cyclic group  of prime order 𝑞 and Divisor , 
as shown in the following two theorems [33,34]. In this section, we 
discuss the formal security analyses of our proposed scheme based on 
the Hyperelliptic Curve Computational Diffie–Hellman Problem (HC-
CDHP) assumptions.

Theorem 1. If a probabilistic polynomial-time (PPT) adversary 1 can 
break the IND-CCA2 security of the proposed CLS-ET scheme with a non-
negligible advantage 𝜖, then a challenger  can be constructed to solve 
the Hyperelliptic Curve Computational Diffie–Hellman Problem (HC-CDHP) 
with an advantage.

𝜖′ ≥
(2𝜖 −clun∕𝑞2)
(ℎ2 +ℎ3)

𝜏′ ≈ 𝜏 + 𝜏𝜆(cls +clus +ℎ2 +ℎ3)

where 𝜏𝜆 is the average oracle query running time.

Proof.  We will show that if such an adversary 1 exists, a challenger 
 can use 1 as a subroutine to solve an instance of the HC-CDH 
problem. The challenger  receives an instance of the HC-CDHP: a tuple 
(, 𝐴 = 𝑎 ⋅, 𝐵 = 𝑏 ⋅) ∈  (), where  is a base divisor and 𝑎, 𝑏 are 
unknown scalars. ’s goal is to compute 𝑍 = 𝑎𝑏. The challenger  is 
interacting with 1 as.

Setup: This algorithm runs by the challenger  and takes the 
security parameter params as input and does the following steps to 
generate some public parameters. It defines the Hyper-elliptic curve 
HEC∕𝑞 over prime finite field 𝑞 . Let  be a cyclic group over 𝑞 where 
 is the Divisor of . Challenger picks a random number as a secret key 
𝑎 = 𝛼. It also chooses four cryptographic hash functions, denoted as 1, 
2, 3, and 4 modeled as a random oracle model (ROM). Finally, 
sends some public parameters for encryption and decryption, such as 
params ∈ {HEC,𝑞 ,,1,2,3,4}, to 1.

Phase 1: In this phase, the adversary 1 issues some queries to 
challenger , and  maintains four hash lists 𝑙𝑖𝑠𝑡1, 𝑙𝑖𝑠𝑡2, 𝑙𝑖𝑠𝑡3, 𝑙𝑖𝑠𝑡4 and 
answers their queries as follows.

• 1 𝑄𝑢𝑒𝑟𝑖𝑒𝑠:  preserves the 𝑙𝑖𝑠𝑡1 of tuple (𝜔, ID𝑢) ∈ 𝑙𝑖𝑠𝑡1, and upon 
1 Query, it checks (𝜔, ID𝑢) exists in 𝑙𝑖𝑠𝑡1 or not, if exists, then 
the value of 1 from the 𝑙𝑖𝑠𝑡1 is returned otherwise, a random 1
∈ {1, 2, 3,… , 𝑞 − 1} is returned and added (𝜔, ID𝑢,1) to the 𝑙𝑖𝑠𝑡1.

• 2 𝑄𝑢𝑒𝑟𝑖𝑒𝑠:  preserves the 𝑙𝑖𝑠𝑡2 of tuple (𝑅𝑖) ∈ 𝑙𝑖𝑠𝑡2, and upon 
2 Query, if 𝑅𝑖 exists in the list, returns the stored 𝜇𝑖 = 𝐻2(𝑅𝑖) to 
𝐴. Otherwise randomly pick 𝜇𝑖 ∈ {0, 1}′ and returns 𝜇𝑖 = 𝐻2(𝑅𝑖)
and added (𝑅𝑖, 𝜇𝑖,2) to the 𝑙𝑖𝑠𝑡2.

• 3 𝑄𝑢𝑒𝑟𝑖𝑒𝑠:  preserves the 𝑙𝑖𝑠𝑡3 of tuple (𝑌𝑖) ∈ 𝑙𝑖𝑠𝑡3, and upon 
3 Query, if 𝑌𝑖 exists in the list, returns the stored 𝜆𝑖 = 𝐻3(𝑌𝑖) to 
𝐴. Otherwise randomly pick 𝜆𝑖 ∈ {0, 1}′ and returns 𝜆𝑖 = 𝐻3(𝑌𝑖)
and added (𝑌𝑖, 𝜆𝑖,3) to the 𝑙𝑖𝑠𝑡3.

• 4 Queries:  preserves the list4 of tuples 4(𝑀) ∈ list4, and 
upon a 4 query, it checks whether 4(𝑀) exists in list1. If it 
exists, the value of 4 from list4 is returned; otherwise, a random 
4 ∈ {1, 2, 3,… , 𝑞 − 1} is returned and 4(𝑀) is added to list4.

•  𝑄𝑢𝑒𝑟𝑖𝑒𝑠: When 1 queries for a private number for an 
identity 𝐼𝐷𝑢:  generates a random integer 𝛽𝑢 ∈ {1, 2,… , 𝑞 − 1}. 
It stores the pair (𝐼𝐷𝑢, 𝛽𝑢) in the list 𝐿PNG and returns 𝛽𝑢 to 1.

•  𝑄𝑢𝑒𝑟𝑖𝑒𝑠: When 1 queries for the partial private key for 
an identity 𝐼𝐷𝑢:

– If 𝐼𝐷𝑢 = 𝐼𝐷′
𝑠,  must abort the simulation. The EUF-CMA 

security model forbids the adversary from requesting the 
private key (or its components) of the identity it intends to 
attack.



Z. Ali et al. Computer Standards & Interfaces 96 (2026) 104070 
Fig. 3. Deployment of the proposed CLS-ET scheme.
– If 𝐼𝐷𝑢 ≠ 𝐼𝐷′
𝑠,  generates a random integer 𝜔′

𝑢 ∈
{1, 2,… , 𝑞−1}, stores the tuple (𝐼𝐷𝑢, 𝜔′

𝑢) in 𝐿Key, and returns 
𝜔′
𝑢 to 1.

•  𝑄𝑢𝑒𝑟𝑖𝑒𝑠: When 1 requests the public key for an identity 
𝐼𝐷𝑢:

– If 𝐼𝐷𝑢 = 𝐼𝐷′
𝑠, the challenger embeds the second part of the 

HC-CDHP instance. It sets the public key 𝑃𝑏′𝑠 = 𝐵 = 𝑏. 
It returns 𝑃𝑏′𝑠 to 1.  does not know the corresponding 
private key, which is expected.

– If 𝐼𝐷𝑢 ≠ 𝐼𝐷′
𝑠,  generates a complete, valid key pair. It 

chooses random secrets 𝑥𝑢, 𝑦𝑢 ∈ {1, 2,… , 𝑞 − 1}. It uses the 
simulated partial private key 𝜔′

𝑢 from the 𝑄PPKG simulation 
to compute the public key 𝑃𝑏𝑢 = 1(𝜔′

𝑢∥𝐼𝐷𝑢) + 𝑥𝑢. 
The full private key is 𝑃𝑟𝑢 = 𝑥𝑢 ⋅ 𝑃𝑏𝑢.  stores all these 
components in 𝐿Key and returns the public parts to 1.

• Certificateless Signcryption Queries: When 1 issues a signcryp-
tion query,

– 𝐶 checks if ID𝑢 = ID′
𝑢, then  embed the HC-CDH problem 

part in Pb𝑢 as Pb𝑢 = 1(𝜔∥ID𝑢) ⋅  + 𝐵 and compute the 
remaining ciphertext part as calculated in the real signcryp-
tion algorithm and return the certificateless-signcryption 
tuple 𝛺′ = {𝑈 ′, 𝛤 ′, 𝑌 ′, 𝜇′, 𝑉 ′} to 1.

– 𝐶 checks if ID𝑢 ≠ ID′
𝑢, then it picks two numbers 𝑠, 𝜂 ∈

{1, 2, 3,… , 𝑞−1} and computes: 𝑚 = 4(𝑀), 𝑅 = (𝜂 ⋅𝛥) ⋅Pb𝑛, 
𝑍 = 𝜂 ⋅ EPb𝐵 , 𝑌 = 1(𝑀) ⋅ 𝛥 ⋅ Pr𝐴, 𝜇 = 𝜂 ⋅ 𝜔 (mod 𝑞), 
𝑈 = 𝜂 ⋅ , 𝛤 = bin(𝜂 ⋅ 𝑚), ⊕2(𝑠 ⋅ 𝑅) where 𝑚𝑛 =
4(𝑀𝑛), 𝑉 = (𝑀∥nonce) ⊕ 3(𝑌 ) ⊕ 3(𝑍), and sends the 
certificateless-signcryption tuple 𝛺 = {𝑈, 𝛤 , 𝑌 , 𝜇, 𝑉 } to 1.

• Certificateless Unsigncryption Queries: When 1 issues a unsign-
cryption query,  checks if ID𝑢 ≠ ID′

𝑢, then 𝑀 is returned. 
Otherwise, the following steps are performed:

1. Calculates 𝑍′ = 𝑦𝐵 ⋅ 𝑈 .
2. Finally, computes the message 𝑀 ′ = 𝑉 ⊕3(𝑌 )⊕3(𝑍′)
and return it to 1.
7 
Challenge: 𝑀1 and 𝑀2 are two equal-length but dissimilar mes-
sages chosen by 1. 1 also chooses the sender’s identity ID′

𝑠 and 
sends it to . Upon receiving the messages 𝑀1 and 𝑀2 and identity 
ID′

𝑠,  randomly selects a bit 𝑓 ∈ {0, 1} and produces a certificateless-
signcryption tuple 𝛺′ = {𝑈 ′, 𝛤 ′, 𝑌 ′, 𝜇′, 𝑉 ′} for the message 𝑀𝑓  using 
the following process: First,  embed the HC-CDH problem part in 
Pb𝑢 as Pb𝑢 = 1(𝜔∥ID𝑢) ⋅  + 𝐵, then it randomly picks two numbers 
𝑠, 𝜂 ∈ {1, 2, 3,… , 𝑞 − 1} and computes: Compute 𝑚′ = 4(𝑀), 𝑅′ =
(𝜂 ⋅ 𝛥) ⋅ Pb𝑛, 𝑍′ = 𝜂 ⋅ EPb𝐵 , 𝑌 ′ = 1(𝑀) ⋅ 𝛥 ⋅ Pr𝐴, 𝜇′ = 𝜂 ⋅ 𝜔 (mod 𝑞), 
𝑈 ′ = 𝜂 ⋅, 𝛤 ′ = 𝛷(𝜂 ⋅𝑚)⊕2(𝑠 ⋅𝑅), 𝑉 ′ = (𝑀∥nonce)⊕3(𝑌 )⊕3(𝑍), 
after making all the calculations, the certificateless-signcrypter sends 
the tuple 𝛺′ = {𝑈 ′, 𝛤 ′, 𝑌 ′, 𝜇′, 𝑉 ′} to 1.

Phase 2: In this phase, 1 made the identical queries as aforemen-
tioned in Phase 1, except the certificateless unsigncryption query clus
for the targeted ciphertext 𝛺′ = {𝑈 ′, 𝛤 ′, 𝑌 ′, 𝜇′, 𝑉 ′}.  answers all the 
queries upon receiving them from 1 except clus with ID′

cls.
Guess: 1 outputs a bit 𝑓 ′ ∈ {0, 1}, and if 𝑓 ′ = 𝑓 , then it is clear that 

1 has succeeded and can calculates 𝑍′ = 𝑦𝐵 ⋅𝑈𝑛, 𝑌𝑛 = 4(𝑀𝑛) ⋅𝛥 ⋅𝑃𝑟𝐴, 
and 𝑉𝑛 = (𝑀𝑛,nonce) ⊕ 3(𝑌𝑛) + 3(𝑍𝑛), and Finally, can computes 
the message 𝑀 ′

𝑛 = 𝑉𝑛 ⊕ 3(𝑌𝑛) ⊕ 3(𝑍′
𝑛). The following equation can 

achieve the HC-CDHP solution: 𝑇 = (𝜂𝑦𝛽)−1(𝑅 − 𝜂𝛥1(𝜔∥𝐼𝐷) ⋅), it is 
easy to deduce that 𝑇 = 𝑎𝑏 if 𝑅 = (𝜂 ⋅ 𝛥) ⋅ Pb Therefore, the CLS-ET 
scheme is secure against IND-CCA2.

Theorem 2. If the HC-CDHP assumption holds in the Jacobian group of 
the hyperelliptic curve, then the proposed CLS-ET scheme is secure against 
EUF-CMA in the Random Oracle Model (ROM).

Proof. Let 1 be a probabilistic polynomial-time (PPT) adversary that 
can break the EUF-CMA security of the scheme with a non-negligible 
advantage 𝜖. We will construct a challenger  that can use 1 to solve 
an instance of the HC-CDHP. The challenger  is given an HC-CDHP 
instance, which is a tuple (𝐷,𝐴 = 𝑎, 𝐵 = 𝑏), and its goal is to 
compute 𝑍 = 𝑎𝑏.

Setup:  takes the HC-CDHP instance (𝐷,𝐴,𝐵). It sets the KGC’s 
master public key 𝑃pub = 𝐴 = 𝑎. This implicitly sets the KGC’s 
master secret key 𝛼 to the unknown value 𝑎.  randomly selects a 
target identity 𝐼𝐷′

𝑠 from the space of possible identities. This is the 
identity for which 1 will attempt to create a forgery.  initializes 
empty lists to simulate the random oracles: 𝐿1, 𝐿2, 𝐿3, 𝐿4 for the hash 
functions  , , , , respectively. It also initializes a list 𝐿  to 
1 2 3 4 PNG
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track private numbers and 𝐿Key to track generated keys.  sends the 
system parameters params (including 𝑃pub) to the adversary 1.

Queries (Attack Phase) 1 can issue a polynomial number of 
queries, which  answers as follows.

• 𝐻𝑎𝑠ℎ 𝑄𝑢𝑒𝑟𝑖𝑒𝑠:  respond to all the 1,2,3,4, hash queries 
as in Theorem  1.

•  𝑄𝑢𝑒𝑟𝑖𝑒𝑠: When 1 queries for a private number for an 
identity 𝐼𝐷𝑢:  generates a random integer 𝛽𝑢 ∈ {1, 2,… , 𝑞 − 1}. 
It stores the pair (𝐼𝐷𝑢, 𝛽𝑢) in the list 𝐿PNG and returns 𝛽𝑢 to 1.

•  𝑄𝑢𝑒𝑟𝑖𝑒𝑠: When 1 queries for the partial private key for 
an identity 𝐼𝐷𝑢:

– If 𝐼𝐷𝑢 = 𝐼𝐷′
𝑠,  must abort the simulation. The EUF-CMA 

security model forbids the adversary from requesting the 
private key (or its components) of the identity it intends to 
attack.

– If 𝐼𝐷𝑢 ≠ 𝐼𝐷′
𝑠,  generates a random integer 𝜔′

𝑢 ∈
{1, 2,… , 𝑞−1}, stores the tuple (𝐼𝐷𝑢, 𝜔′

𝑢) in 𝐿Key, and returns 
𝜔′
𝑢 to 1.

•  𝑄𝑢𝑒𝑟𝑖𝑒𝑠: When 1 requests the public key for an identity 
𝐼𝐷𝑢:

– If 𝐼𝐷𝑢 = 𝐼𝐷′
𝑠, the challenger embeds the second part of the 

HC-CDHP instance. It sets the public key 𝑃𝑏′𝑠 = 𝐵 = 𝑏. 
It returns 𝑃𝑏′𝑠 to 1.  does not know the corresponding 
private key, which is expected.

– If 𝐼𝐷𝑢 ≠ 𝐼𝐷′
𝑠,  generates a complete, valid key pair. It 

chooses random secrets 𝑥𝑢, 𝑦𝑢 ∈ {1, 2,… , 𝑞 − 1}. It uses the 
simulated partial private key 𝜔′

𝑢 from the 𝑄PPKG simulation 
to compute the public key 𝑃𝑏𝑢 = 1(𝜔′

𝑢∥𝐼𝐷𝑢) + 𝑥𝑢. 
The full private key is 𝑃𝑟𝑢 = 𝑥𝑢 ⋅ 𝑃𝑏𝑢.  stores all these 
components in 𝐿Key and returns the public parts to 1.

• Certificateless Signcryption Queries: When 1 issues a signcryp-
tion query,

– 𝐶 checks if ID𝑢 = ID′
𝑢, then  embeds the second part 

of the HC-CDHP instance. It sets the public key 𝑃𝑏′𝑠 =
𝐵 = 𝑏, and compute the remaining ciphertext part as 
calculated in the real signcryption algorithm and return the 
certificateless-signcryption tuple 𝛺 = {𝑈, 𝛤 , 𝑌 , 𝜇, 𝑉 } to 1.

– If 𝐼𝐷𝑠 ≠ 𝐼𝐷′
𝑠,  has all the necessary key components 

(stored in 𝐿Key) for the sender 𝐼𝐷𝑠. It follows the certifi-
cateless signcryption algorithm in the paper to generate a 
valid tuple 𝛺 and returns it to 1.

Forgery: After making its queries, the adversary 1 outputs a forged 
signcryption tuple 𝛺′ = (𝑈 ′, 𝛤 ′, 𝑌 ′, 𝜇′, 𝑉 ′) for a new message 𝑀 ′

under the target sender identity 𝐼𝐷′
𝑠. For the forgery to be valid: The 

signcryption tuple 𝛺′ must be verifiable as correct. 1 must not have 
queried the partial private key for 𝐼𝐷′

𝑠. 1 must not have requested a 
signcryption for the pair (𝑀 ′, 𝐼𝐷′

𝑠) from the 𝑄cls oracle.
Analysis: Now, the challenger  uses the forged tuple 𝛺′ to com-

pute 𝑎𝑏. From the forgery,  parses the component 𝑌 ′. According 
to the signcryption algorithm, this component is calculated as: 𝑌 ′ =
1(𝑀 ′) ⋅ 𝛥′ ⋅ 𝑃𝑟′𝑠. Once  determines the combined term 𝐾 = (1(𝑀 ′) ⋅
𝑦′𝑠 ⋅ 𝑥

′
𝑠 ⋅ 𝛽

′
𝑠), it can compute the solution to the HC-CDHP instance by 

calculating: 𝑎𝑏 = 𝐾−1 ⋅ 𝑌 ′. Since the adversary 1 can produce a 
valid forgery with non-negligible probability 𝜖, the challenger  can 
successfully solve the HC-CDHP instance with a related non-negligible 
probability. This contradicts the assumption that the HC-CDHP is hard. 
Therefore, no such adversary 1 can exist, and the CLS-ET scheme is 
secure against EUF-CMA.
8 
Theorem 3.  If the HC-CDHP assumption holds in the Jacobian group of 
the hyperelliptic curve, then the proposed CLS-ET scheme is secure against 
OW-CCA2 in the Random Oracle Model (ROM).

Proof.  Assume that 2 is a PPT adversary capable of breaking the OW-
CCA2 security of our scheme with non-negligible advantage 𝜖. Suppose 
there exists a challenger  who claims to solve HC-CDHP in polynomial 
time using 2 as a subroutine. Then, 2 and  engage in the following 
OW-CCA2 security game as.

Setup: The challenger  receives an instance of the HC-CDHP: a 
tuple (, 𝐴 = 𝑎 ⋅, 𝐵 = 𝑏 ⋅) ∈  (), where  is a base divisor and 𝑎, 𝑏
are unknown scalars. ’s goal is to compute 𝑍 = 𝑎𝑏. This algorithm 
runs by the challenger  and picks a random number as a secret key 
𝑎 = 𝛼. It also chooses four cryptographic hash functions, denoted as 1, 
2, 3, and 4 modeled as a random oracle model (ROM). Finally, 
sends some public parameters for encryption and decryption, such as 
params ∈ {HEC,𝑞 ,,1,2,3,4}, to 2.

Query Phase: 2 adaptively queries the following oracles:

• 1 𝑄𝑢𝑒𝑟𝑦: If (𝜔, 𝐼𝐷𝑢, ℎ1) ∈ 𝐿1
, return ℎ1. Else, pick ℎ1 ∈ F𝑞 , 

store (𝜔, 𝐼𝐷𝑢, ℎ1), and return ℎ1.
• 2 𝑄𝑢𝑒𝑟𝑦: If (𝑅𝑖, 𝜇𝑖, ℎ2) ∈ 𝐿2

, return ℎ2. Else, pick ℎ2 ∈ F𝑞 , store 
(𝑅𝑖, 𝜇𝑖, ℎ2), and return ℎ2.

• 3 𝑄𝑢𝑒𝑟𝑦: If (𝑌𝑖, 𝜆𝑖, ℎ3) ∈ 𝐿3
, return ℎ3. Else, pick ℎ3 ∈ F𝑞 , store 

(𝑌𝑖, 𝜆𝑖, ℎ3), and return ℎ3.
• 4 𝑄𝑢𝑒𝑟𝑦: If (𝑀,ℎ4) ∈ 𝐿4

, return ℎ4. Else, pick ℎ4 ∈ F𝑞 , store 
(𝑀,ℎ4), and return ℎ4.

•  𝑄𝑢𝑒𝑟𝑖𝑒𝑠: When 2 queries for a private number for an 
identity 𝐼𝐷𝑢:  generates a random integer 𝛽𝑢 ∈ {1, 2,… , 𝑞 − 1}. 
It stores the pair (𝐼𝐷𝑢, 𝛽𝑢) in the list 𝐿PNG and returns 𝛽𝑢 to 2.

•  𝑄𝑢𝑒𝑟𝑖𝑒𝑠: When 2 queries for the partial private key for 
an identity 𝐼𝐷𝑢:

– If 𝐼𝐷𝑢 = 𝐼𝐷′
𝑠,  must abort the simulation. The EUF-CMA 

security model forbids the adversary from requesting the 
private key (or its components) of the identity it intends to 
attack.

– If 𝐼𝐷𝑢 ≠ 𝐼𝐷′
𝑠,  generates a random integer 𝜔′

𝑢 ∈
{1, 2,… , 𝑞−1}, stores the tuple (𝐼𝐷𝑢, 𝜔′

𝑢) in 𝐿Key, and returns 
𝜔′
𝑢 to 2.

•  𝑄𝑢𝑒𝑟𝑖𝑒𝑠: When 2 requests the public key for an identity 
𝐼𝐷𝑢:

– If 𝐼𝐷𝑢 = 𝐼𝐷′
𝑠, the challenger embeds the second part of the 

HC-CDHP instance. It sets the public key 𝑃𝑏′𝑠 = 𝐵 = 𝑏. 
It returns 𝑃𝑏′𝑠 to 2.  does not know the corresponding 
private key, which is expected.

– If 𝐼𝐷𝑢 ≠ 𝐼𝐷′
𝑠,  generates a complete, valid key pair. It 

chooses random secrets 𝑥𝑢, 𝑦𝑢 ∈ {1, 2,… , 𝑞 − 1}. It uses the 
simulated partial private key 𝜔′

𝑢 from the 𝑄PPKG simulation 
to compute the public key 𝑃𝑏𝑢 = 1(𝜔′

𝑢∥𝐼𝐷𝑢) + 𝑥𝑢. 
The full private key is 𝑃𝑟𝑢 = 𝑥𝑢 ⋅ 𝑃𝑏𝑢.  stores all these 
components in 𝐿Key and returns the public parts to 2.

• Trapdoor Queries: When 2 submits a ciphertext tuple 𝛺 ≠ 𝛺′, 
the challenger  returns the trapdoor 𝑇𝑛 = 𝑠 ⋅ Pr to 2.

• Certificateless Unsigncryption Queries: When 2 issues a unsign-
cryption query,  checks if ID𝑢 ≠ ID′

𝑢, then 𝑀 is returned. 
Otherwise, the following steps are performed:

1. Calculates 𝑍′ = 𝑦𝐵 ⋅ 𝑈 .
2. Finally, computes the message 𝑀 ′ = 𝑉 ⊕3(𝑌 )⊕3(𝑍′)
and return it to 2.
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Fig. 4. Comparison of computational cost: (a) Time for encryption, (b) Time for decryption, and (c) Time for test.
Fig. 5. Comparison of communication cost.

Challenge: 𝑀1 and 𝑀2 are two equal-length but dissimilar mes-
sages chosen by 2. 2 also chooses the sender’s identity ID′

𝑠 and 
sends it to . Upon receiving the messages 𝑀1 and 𝑀2 and identity 
ID′

𝑠,  randomly selects a bit 𝑓 ∈ {0, 1} and produces a certificateless-
signcryption tuple 𝛺′ = {𝑈 ′, 𝛤 ′, 𝑌 ′, 𝜇′, 𝑉 ′} for the message 𝑀𝑓  using 
the following process: First,  embed the HC-CDH problem part in 
Pb𝑢 as Pb𝑢 = 1(𝜔∥ID𝑢) ⋅  + 𝐵, then it randomly picks two numbers 
𝑠, 𝜂 ∈ {1, 2, 3,… , 𝑞 − 1} and computes: Compute 𝑚′ = 4(𝑀), 𝑅′ =
(𝜂 ⋅ 𝛥) ⋅ Pb𝑛, 𝑍′ = 𝜂 ⋅ EPb𝐵 , 𝑌 ′ = 1(𝑀) ⋅ 𝛥 ⋅ Pr𝐴, 𝜇′ = 𝜂 ⋅ 𝜔 (mod 𝑞), 
𝑈 ′ = 𝜂 ⋅, 𝛤 ′ = 𝛷(𝜂 ⋅𝑚)⊕2(𝑠 ⋅𝑅), 𝑉 ′ = (𝑀∥nonce)⊕3(𝑌 )⊕3(𝑍), 
after making all the calculations, the certificateless-signcrypter sends 
the tuple 𝛺′ = {𝑈 ′, 𝛤 ′, 𝑌 ′, 𝜇′, 𝑉 ′} to 2.

Phase 2: In this phase, 2 made the identical queries as aforemen-
tioned in Phase 1, except the certificateless unsigncryption query clus
for the targeted ciphertext 𝛺′ = {𝑈 ′, 𝛤 ′, 𝑌 ′, 𝜇′, 𝑉 ′}.  answers all the 
queries upon receiving them from 2 except clus with ID′

cls.
Guess: 2 outputs a bit 𝑓 ′ ∈ {0, 1}, and if 𝑓 ′ = 𝑓 , then it is clear that 

2 has succeeded and can calculates 𝑍′ = 𝑦𝐵 ⋅𝑈𝑛, 𝑌𝑛 = 4(𝑀𝑛) ⋅𝛥 ⋅𝑃𝑟𝐴, 
and 𝑉𝑛 = (𝑀𝑛,nonce) ⊕ 3(𝑌𝑛) + 3(𝑍𝑛), and Finally, can computes 
the message 𝑀 ′

𝑛 = 𝑉𝑛 ⊕ 3(𝑌𝑛) ⊕ 3(𝑍′
𝑛). The following equation can 

achieve the HC-CDHP solution: 𝑇 = (𝜂𝑦𝛽)−1(𝑅 − 𝜂𝛥1(𝜔∥𝐼𝐷) ⋅), it is 
easy to deduce that 𝑇 = 𝑎𝑏 if 𝑅 = (𝜂 ⋅ 𝛥) ⋅ Pb Therefore, the CLS-ET 
scheme is secure against OW-CCA2.

6. Test environment

6.1. Measurement tools

We used the charm-crypto library [35], the PBC library [36], and 
the G2HEC library [37] for benchmarking purposes. The code is mostly 
written in Python and C coding languages. The charm-crypto library is 
a Python-based library that internally utilizes other libraries such as the 
PBC library [36], the GMP library [38], and the OpenSSL library [39] 
to provide secure arithmetic operations and cryptographic parameters 
necessary for cryptographic schemes. We chose to use the charm-crypto 
library because it contains a vast collection of cryptographic primitives 
9 
Table 2
Average running times of various operations.
 Symbols Operations Laptop 4200U @ 2.6 GHz 
 Mul Point multiplication 0.11912 ms  
 Exp Exponential operation 0.42102 ms  
 Pairing Pairing operation 1.26010 ms  
 Dmul Divisor multiplication 0.06069 ms  

and functions, greatly simplifying the implementation process. For the 
calculation of hyperelliptic curve divisor multiplication operation, the 
libg2hec library [37] version 1.0.1 was used, which internally utilizes 
the NTL library [40]. Python was chosen as the programming language 
because it is fully compatible with the charm-crypto library and offers 
ease of use and simplicity. To ensure maximum compatibility, we are 
using version 0.50 of the charm-crypto library and Python version 
3.7, as this is the latest version of Python that is compatible with the 
charm-crypto library.

6.2. Measurement environment

A laptop PC with an Intel Core i5-4200U Processor running @ 
2.6 GHz with 8 GB DDR3L RAM was configured as a test environment. 
The system was installed with the Linux-based Ubuntu 19.10 64-bit 
operating system, which comes with pre-installed Python 3.7. Ubuntu 
OS was chosen because it is a free and open-source operating system 
known for its user-friendly interface and extensive community support.

6.3. Measurement technique

To compute the computational cost of different cryptographic op-
erations such as Pairing, Point Multiplication (Mul), Exponentiation 
(Exp), and HEC Divisor Multiplication (Dmul), we run the benchmark 
test. After getting the costs of these cryptographic operations, as pro-
vided in Table  2, the number of different types of operations each 
scheme uses is counted. Then, to compute the computational cost of 
each scheme, we multiplied the computed value of each cryptographic 
operation by the number of different operations each scheme uses to 
get the overall cost of each scheme.

7. Performance analysis

In this section, a comparison is made between the proposed CLS-
ET scheme and other alternative schemes proposed by T.T. Tsai [22], 
R. Elhabob [27], J. Tian [26], and M. Ramadan [11] in terms of 
computation cost, communication cost, and functionality.

7.1. Computational cost

The Table  3 compares different schemes based on their computa-
tional costs for Encryption/Signcryption, Decryption/Unsigncryption, 
and Equality test phases. The detailed features of each scheme are pre-
sented in Table  5. When compared with the schemes of T.T. Tsai [22], 
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Table 3
Detailed comparison of computational cost in milliseconds.
 Schemes Encryption Decryption Test  
 T.T. Tsai [22] 2 ⋅Pairing + 5 ⋅Exp (4.625 ms) 2 ⋅Pairing + 2 ⋅Exp (3.362 ms) 4 ⋅Pairing (5.040 ms)  
 R. Elhabob [27] 2 ⋅Exp + 2 ⋅Mul (1.080 ms) 2 ⋅Pairing + 1 ⋅Mul (2.639 ms) 2 ⋅Pairing + 2 ⋅Exp (3.362 ms) 
 J. Tian [26] 7 ⋅Mul (0.834 ms) 6 ⋅Mul (0.715 ms) 6 ⋅Mul (0.715 ms)  
 M. Ramadan [11] 3 ⋅Mul + 1 ⋅Exp + 1 ⋅Pairing (2.039 ms) 4 ⋅Pairing (5.040 ms) 3 ⋅Pairing (3.780 ms)  
 Our scheme 8 ⋅Dmul (0.486 ms) 1 ⋅Dmul (0.061 ms) 4 ⋅Dmul (0.243 ms)  
Table 4
Communication cost comparison in bits.
 Schemes Communication cost Communication cost in bits  
 T.T. Tsai [22] 1(ID) + 1(K) + 2(M) + 1(TD) + 1(ET) 1(256) + 1(256) + 2(100) + 1(256) + 1(1) (969 bits)  
 R. Elhabob [27] 1(ID) + 1(K) + 2(M) + 1(TD) + 1(ET) 1(256) + 1(256) + 2(100) + 1(256) + 1(1)  (969 bits) 
 J. Tian [26] 1(ID) + 1(K) + 2(M) + 1(TD) + 1(ET) 1(160) + 1(160) + 2(100) + 1(160) + 1(1)  (681 bits) 
 M. Ramadan [11] 1(ID) + 1(K) + 2(M) + 1(TD) + 1(ET) 1(160) + 1(160) + 2(100) + 1(160) + 1(1)  (681 bits) 
 Our scheme 1(ID) + 1(K) + 2(M) + 1(TD) + 1(ET) 1(80) + 1(80) + 2(100) + 1(80) + 1(1)  (441 bits)  
R. Elhabob [27], J. Tian [26], and M. Ramadan [11], our scheme 
reduces the computation cost in the Encryption/Signcryption phase by 
89.49%, 55.00%, 41.72%, and 76.16% respectively. Similarly, during 
the Decryption/Unsigncryption phase, our scheme achieves a reduc-
tion in computation cost by 98.19%, 97.69%, 91.47%, and 98.79%, 
respectively. Moreover, our scheme reduces the computation cost in the 
Equality Test phase, by 95.18%, 92.77%, 66.01% and 93.57%, respec-
tively. Our proposed scheme employs Hyperelliptic Curve Cryptogra-
phy (HECC) with an 80-bit key size and does not require any Pairing 
operations. By analyzing Table  3 and the accompanying Fig.  4, it be-
comes evident that Our scheme stands with significantly reduced com-
putational requirements in comparison to the other schemes. It achieves 
Encryption/Signcryption with 8 ⋅ Dmul (0.486 ms), Decryption/Un-
signcryption with 1 ⋅ Dmul (0.061 ms), and Equality Testing with 4 
⋅ Dmul (0.243 ms), making it more efficient for resource-constrained 
IoT-enabled WSNs.

7.2. Communication cost

The communication cost of various schemes is compared in Ta-
ble  4. In all schemes, the message length was consistently set at 
100 bits. Upon analyzing Table  4 and the accompanying Fig.  5, it 
becomes evident that our scheme significantly outperforms others in 
terms of communication cost reduction, and when compared with M. 
Ramadan [11] and J. Tian [26], our scheme boasts an impressive 
35.24% reduction. Moreover, in comparison with T.T. Tsai [22] and 
R. Elhabob [27], our scheme demonstrates a remarkable 54.49% re-
duction in communication cost. These results highlight the significant 
efficiency of our scheme in terms of communication costs.

7.3. Property comparison

The Table  5 shows the comparison of different proposed schemes for 
addressing issues related to the use of cloud computing in IoT-enabled 
WSNs. The schemes are evaluated based on the type of cryptosys-
tem used, as well as various features such as keyword search (KS) 
and equality testing (ET). The Table  5 also indicates whether each 
scheme addresses key escrow (KEP) and certificate management prob-
lems (CMP) and whether it supports equality testing. Our proposed 
scheme encompasses all major features and, being based on Certifi-
cateless Cryptography (CLC), effectively addresses key escrow and 
certificate management problems.

8. Conclusion

In this work, we proposed a lightweight certificateless signcryption 
scheme with equality test (CLS-ET) for WBANs. Our scheme incor-
porates the notions of certificateless Signcryption with the Equality 
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Table 5
Feature comparison of different proposed schemes.
 Schemes Cryptosystem KS ET Fix 

KEP
Fix 
CMP

 

 T.T. Tsai [22] IBC-based ✓ ✓ × ✓  
 R. Elhabob [27] CLC-based ✓ ✓ ✓ ✓  
 J. Tian [26] CLC-based ✓ ✓ ✓ ✓  
 M. Ramadan [11] IBC-based ✓ ✓ × ✓  
 Our scheme CLC-based ✓ ✓ ✓ ✓  

Test, enabling the test between two ciphertexts encrypted under the 
same or different public keys. Our scheme is constructed under the 
certificateless cryptosystem (CLC), thereby addressing the Certificate 
management problem. Moreover, our proposed scheme fixes the inher-
ent key escrow problem of ID-based encryption (IBE). We performed 
a security analysis on our proposed scheme and achieved IND-CCA2, 
EUF-CMA, and OW-CCA2 levels of security in the Random Oracle 
Model (ROM). Furthermore, we compared our proposed scheme with 
other existing state-of-the-art schemes. By minimizing computational 
costs and communication costs while maintaining security and func-
tionality, our scheme exhibits significantly lower computational costs 
for encryption, decryption, and testing stages, thus enhancing efficiency 
in resource-constrained IoT-enabled WSNs.
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