
Computer Standards & Interfaces 96 (2026) 104070

A
0

Contents lists available at ScienceDirect

Computer Standards & Interfaces

journal homepage: www.elsevier.com/locate/csi

Securing Wireless Body Area Network with lightweight certificateless
signcryption scheme using equality testI

Zohaib Ali a,e , Junaid Hassan b , Muhammad Umar Aftab a ,∗,
Negalign Wake Hundera b,c,d ,∗∗, Huiying Xu c, Xinzhong Zhu c,f,g ,∗

a Department of Computer Science, National University of Computer and Emerging Science, Islamabad, Chiniot-Faisalabad Campus, 35400, Pakistan
b School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
c School of Computer Science and Technology, Zhejiang Normal University, Jinhua, 321004, China
d Zhejiang Institute of Optoelectronics, Jinhua, China
e Department of Computer Science, The University of Faisalabad, Faisalabad Campus, 38600, Pakistan
f AI Research Institute of Beijing Geekplus Technology Co., Ltd., Beijing, 100101, China
g Research Institute of Hangzhou Artificial Intelligence, Zhejiang Normal University, Hangzhou, 311231, China

A R T I C L E I N F O

Keywords:
Internet of Things (IoT)
Cloud
Equality test
Wireless Body Area Network (WBAN)
Hyperelliptic curves (HEC)
Certificateless signcryption

 A B S T R A C T

The growth of Internet of Things (IoT) technologies, such as cloud computing, 5G communication, and wireless
sensor networks, is driving a smarter and more connected future. Thousands of terabytes of data are uploaded
to cloud servers each day for storage or computation. Due to data privacy, we cannot upload personal pictures,
videos, locations, and medical records directly to the cloud because they will be at risk if compromised. Due to
the untrusted nature of the cloud, data needs to be encrypted to ensure confidentiality before being outsourced
to it. The data must first be decrypted before any operation can be performed, which can be resource-intensive
and wasteful. Secure data transmission from sensors to an Internet host becomes a critical issue for the success
of IoT. To address these issues, this paper introduces a lightweight certificateless signcryption scheme with an
equality test (CLS-ET), which leverages the power of hyperelliptic curves. This scheme obtains the security goals
of authentication, integrity, confidentiality, and non-repudiation in one logical step. Furthermore, this scheme
enables us to verify whether two ciphertexts are encrypted with the same or different keys that contain the
same information without decrypting them. Indistinguishability under adaptive chosen ciphertext attack (IND-
CCA2), existential unforgeability under chosen message attack (EUF-CMA), and one-wayness under adaptive
chosen ciphertext attack (OW-CCA2) level security have been achieved by the proposed scheme in the Random
Oracle Model (ROM). Furthermore, we compared our proposed scheme with other existing state-of-the-art
schemes. While maintaining security and functionality, our scheme reduces computation costs for encryption,
decryption, and testing stages, thereby improving efficiency in resource-constrained IoT-enabled Wireless Body
Area Networks.
1. Introduction

Cloud computing is gaining popularity due to recent technological
advancements, such as the Internet of Things (IoT), 5G communication,
and Wireless Sensor Networks (WSNs). WSNs, often integrated as part
of IoT, consist of dedicated sensor nodes that monitor and record
the data and transfer collected data to a central location. A Wireless
Body Area Network (WBAN) is a specialized type of WSN designed

I This work was supported by the National Natural Science Foundation of China (62376252); Zhejiang Province Leading Geese Plan (2025C02025,
2025C01056); Zhejiang Province Province-Land Synergy Program (2025SDXT004-3).
∗ Corresponding authors.

∗∗ Corresponding author at: School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, 610054,
China.

E-mail addresses: umar.aftab@nu.edu.pk (M.U. Aftab), nigaccna21@zjnu.edu.cn (N.W. Hundera), zxz@zjnu.edu.cn (X. Zhu).

for healthcare monitoring. It serves as a core component in numerous
telehealth applications, including personalized healthcare and home-
based mobile health services. WBANs can also utilize an equality test to
evaluate a patient’s health status [1]. An overview of a working WBAN
with an equality test server is shown in Fig. 1. Patients are equipped
with various sensors to collect real-time or continuous physiological
health data, such as blood pressure, glucose levels, breathing rate,
https://doi.org/10.1016/j.csi.2025.104070
Received 25 April 2025; Received in revised form 18 July 2025; Accepted 28 Augu
vailable online 17 September 2025
920-5489/© 2025 Elsevier B.V. All rights are reserved, including those for text and
st 2025

 data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/csi
https://www.elsevier.com/locate/csi
https://orcid.org/0009-0001-8141-3864
https://orcid.org/0000-0001-9770-9275
https://orcid.org/0000-0002-9649-7757
https://orcid.org/0000-0003-2294-9279
https://orcid.org/0000-0002-0033-5260
mailto:umar.aftab@nu.edu.pk
mailto:nigaccna21@zjnu.edu.cn
mailto:zxz@zjnu.edu.cn
https://doi.org/10.1016/j.csi.2025.104070
https://doi.org/10.1016/j.csi.2025.104070

Z. Ali et al. Computer Standards & Interfaces 96 (2026) 104070
Fig. 1. Standard WBAN scenario.

electrocardiogram (ECG), and motion [2–4]. This data is then wirelessly
transferred to an IoT device, where it is encrypted and sent to a cloud
server for storage. The cloud server, which also receives encrypted data
from medical institutions, performs an equality test to determine the
patient’s health status. If the test indicates equality, the patient’s status
is considered normal; if not, the patient’s status is deemed abnormal.
This process not only enhances the quality and efficiency of healthcare
delivery but also reduces treatment costs.

Globally, cloud-based systems are widely used to manage and pro-
cess vast amounts of data. In the e-healthcare sector, cloud computing
has become the most common solution for managing and facilitating
communication among IoT devices [5]. Cloud servers are utilized to
store large volumes of data and perform computations on it. How-
ever, due to the untrusted nature of cloud environments, directly
uploading personal data such as pictures, videos, location informa-
tion, and medical records poses significant risks if the cloud server is
compromised.

Data security and efficiency are significant challenges in resource-
constrained IoT-enabled Wireless Body Area Networks (WBANs). The
confidentiality of data can be achieved by applying encryption before
outsourcing it to the cloud. However, there is a limitation in data recov-
ery because of the ‘‘all-or-nothing’’ decryption characteristic [6]. Most
IoT devices are battery-powered with limited storage and processing ca-
pabilities, which exacerbates these challenges. To improve this process,
Boneh [7] introduced the notion of PKE-KS, which integrates keyword
search with public key encryption and retrieves their information with-
out decrypting the data. Using keyword search, the cloud can perform
a test to check whether two ciphertexts carry the same information or
not. However, this approach has a drawback as it does not work when
two ciphertexts are encrypted with different public keys. Unfortunately,
this scheme becomes unsuitable for cloud searching, due to the hetero-
geneous nature of IoT data. To address this issue, Yang [8] proposed the
notion of public key encryption with an equality test (PKE-ET), which
supports search operations among ciphertexts encrypted with both the
same and distinct public keys. This method is more suitable for the
heterogeneous nature of IoT data. Nevertheless, the scheme is built un-
der the framework of a public key infrastructure (PKI), which requires
digital certificates to verify the validity of public keys. To eliminate
the need for certificates and enhance efficiency, Ma [9] introduced
the first Identity-Based Encryption with Equality Test (IBEET). Building
on this foundation, researchers have developed various schemes to
address emerging security challenges. In response to threats posed
by quantum computers, Z. Yang [10] proposed a lattice-based IBEET
scheme to enhance cloud service security against quantum threats.
Additionally, in response to the COVID-19 pandemic, Ramadan [11]
introduced the WBAN-19 scheme for telemedicine systems, designed to
secure telemedicine systems and reduce the widespread transmission of
contagious diseases.

With the growing prevalence of IoT-enabled Wireless Sensor Net-
works (WSNs), the usage of cloud computing is also increasing. Due
to the untrusted nature of the cloud, data must be encrypted before
being outsourced. While Identity-Based Encryption (IBE) can elimi-
nate the need for certificates, practical IBE schemes often rely on
2
bilinear pairings as a mathematical tool [12,13]. However, bilinear
operations are significantly more computationally expensive than point
multiplication, which poses a challenge given the resource-constrained
nature of IoT-enabled WSNs. Therefore, there is a pressing need to
improve the efficiency of existing schemes in terms of computational
cost and message overhead. In this paper, a Lightweight Certificateless
Signcryption scheme with equality test for WBAN (CLS-ET) is proposed
to address these challenges. Our scheme relies on hyperelliptic curve
cryptography (HECC), which eliminates the need for pairing operations
during the signcryption and unsigncryption stages. The experimental
findings indicate that the bilinear pairing computation cost is much
higher as compared to both the Rivest, Shamir, and Adleman (RSA) and
elliptic curve cryptography (ECC) methods by 13.65 ms and 13.93 ms,
respectively [14]. Furthermore, RSA’s computation cost is higher than
that of HECC by 14.42 ms [15]. HECC, with an 80-bit key size, provides
a security level equivalent to a 1024-bit RSA key and a 160-bit ECC key,
but with lower computational costs and communication overhead.

1.1. Related work

The growth of Internet of Things (IoT) technologies, including cloud
computing and wireless sensor networks, is driving the creation of
a smarter and more connected future. However, data privacy is a
concern, and users often encrypt sensitive information before storing it
in the cloud. Most IoT devices are resource-constrained, when it comes
to memory, storage, energy, and processing power, and are mostly
battery-powered. Various schemes have been put forward to guarantee
the quick retrieval of encrypted data from the cloud.

In an effort to solve this problem, Boneh [7] proposed the first
public key encryption scheme with the functionality of keyword search.
Sadly, this technique becomes inconvenient for cloud searching, due to
the diverse nature of IoT data. To solve this issue, Yang [8] proposed
public key encryption with an equality test (PKE-ET) scheme. However,
these schemes are constructed under a public key infrastructure (PKI),
requiring digital certificates to confirm the validity of the public keys.
The certificate management cost incurred by PKI is unfavorable for
resource-constrained IoT-enabled WSNs with limited storage and com-
puting capacity. This is because the demand for public key certificates
(involving storage, distribution, and revocation) is high, and additional
time is spent verifying a public key before it can be used.

Shamir [16] proposed an Identity-based encryption (IBE) scheme
to eliminate certificate management. In IBE, each user uses their own
identity (Name, Email, EMI number, etc.) as the public key. In order to
ensure data confidentiality and achieve efficiency, Ma [9] presented
the first identity-based encryption with the functionality to perform
an equality test (IBEET) scheme. But this scheme faces user revoca-
tion and key escrow problems. Afterward, numerous studies regarding
IBBEET have been published in the literature [17–19]. Most notably,
Ramadan [20] proposed an ID-based encryption scheme, IBEET-RSA for
Wireless Body Area Networks (WBANs). The scheme is built on RSA and
has the security of OW-ID-CCA in the RO model. It presents a promising
solution for ensuring medical data security and privacy in WBANs.

Key escrow and user revocations are the inherent problems with
ID-based cryptography (IBC). In an effort to solve the user revocation
problem, Sun [21] proposed a scheme that provides user revocation
and consumes less bandwidth, storage, and other resources because
both the ciphertext and key are short. The security of the scheme
is accordant with the Chinese SM9 encryption standard and has the
hardness assumption of the BDH (Bilinear Diffie–Hellman) problem.
Subsequently, another scheme called RIBEET for wireless body area
networks (WBANs) was proposed [22]. To solve the user key escrow
problem, Elhabob [23] proposed CL-PKE-ET scheme for the Internet of
Vehicles (IoV) environment. The scheme was based on the original CL-
PKC scheme proposed by Al-Riyami [24]. The user’s private key is split
into two parts to resolve the key-escrow problem. Key generator centers
(KGCs) create the first part, while users create the second part. The user

Z. Ali et al. Computer Standards & Interfaces 96 (2026) 104070
can make the complete private key by combining them. The scheme has
demonstrated IND-CCA and OW-CCA level security in the RO model. El-
habob [25] further proposed a pairing-free CL-PKE-ET protocol, which
offers superior performance compared to its predecessor scheme. Ad-
ditionally, Tian [26] proposed a lightweight certificateless encryption
scheme with keyword search and equality test (CLAE-KS&ET), pro-
viding enhanced security against message recovery attacks for cloud
environments while supporting secure ciphertext retrieval and compari-
son without decryption. However, most existing schemes are unsuitable
for applications within IoT-enabled Wireless Sensor Networks (WSNs)
due to their high computational costs, message overhead, and storage
demands.

1.2. Contributions

1. We propose a novel Certificateless Signcryption scheme with
Equality Test (CLS-ET) specifically designed for Wireless Body
Area Networks (WBANs). In this scheme, the cloud server can
use the ciphertext form of the patient’s health and medical
institution’s data to perform an equality test and check whether
the patient’s status is normal or abnormal, indicating the need
for medical attention.

2. Based on the syntax of [27], we propose a novel framework
and concrete construction for the CLS-ET scheme specifically
designed for WBANs. Our construction is optimized to meet the
unique requirements of WBANs within IoT environments.

3. The proposed scheme employs Hyperelliptic Curve Cryptography
(HECC) with an 80-bit key size, offering significant efficiency
improvements over traditional elliptic curve cryptography (ECC)
and bilinear pairing methods, which require larger key sizes
160-bits and 256-bits, respectively.

4. Our scheme effectively addresses the inherent key escrow issue
associated with Identity-Based Encryption (IBE), enhancing the
security and practicality of the proposed system.

5. We provide rigorous security proofs and analysis, demonstrating
that our scheme achieves IND-CCA2, EUF-CMA, and OW-CCA2
levels of security within the Random Oracle Model (ROM).

6. Through extensive evaluation, we show that the proposed CLS-
ET scheme outperforms existing state-of-the-art schemes in terms
of computational efficiency and message overhead, while main-
taining robust security. This makes our scheme particularly well-
suited for resource-constrained IoT-enabled WSNs.

1.3. Paper organization

The rest of this paper is organized as follows. Preliminaries are
given in Section 2. The framework and security model are presented
in Section 3. The concrete construction of the scheme is detailed
in Section 4. A security analysis is provided in Section 5. Details
of the test environment and a comparative analysis of our proposed
scheme against other existing state-of-the-art schemes are presented in
Sections 6 and 7, respectively. Conclusions are drawn in Section 8.

2. Preliminaries

2.1. Hyperelliptic curve

The hyperelliptic curve (HEC) is a special class of algebraic curves
introduced by Koblitz [28]. HEC can be considered a generalized or
shorter key version of [29]. Unlike ECC, the points on HEC are not
derived from a group [30]. In HEC, the additive Abelian group is
computed from the divisor, which results in smaller parameters and
key sizes compared to ECC. Despite these smaller parameters, HEC
can perform all essential operations required in a public-key cryptosys-
tem, including signature generation, encryption, decryption, and key
exchange. Importantly, the hyperelliptic curve provides the same level
3
of security as RSA, bilinear pairing, and elliptic curves, making it par-
ticularly well-suited for resource-constrained IoT environments [31].

A curve with a genus value of 1 is commonly referred to as an
elliptic curve (EC). In contrast, hyperelliptic curves are defined over
curves with a genus greater than 1 [32]. For instance, a curve with
a genus of 1 over a finite field q, the group order of the field |q|

requires operands of length 160 bits. This requirement implies that
g. log2 𝑞 ≈ 2160, where g represents the genus of the curve within
the finite field q. Similarly, a curve with a genus of 2 is called a
hyperelliptic curve (HEC) and requires 80-bit long operands within the
field q, where g ⋅ log2 𝑞 ≈ 280.

HEC is a special type of non-singular and projective curve. The
hyperelliptic curve defined over the field q can be represented by
points (w, v) ∈ q, which satisfy the following equation:

𝐻𝐸𝐶 ∶ v2 + ℎ(w)v = 𝑓 (w) (1)

where 𝑓 and ℎ are both polynomials in the field q with deg(𝑓) = 2 𝑔+1
and deg(ℎ) ≤ 𝑔. The curve also satisfies both Eq. (1) and the partial
derivative equations ℎ′(w) = 0 and ℎ′(w)v + 𝑓 ′(w) = 0.

2.2. Complexity assumptions

We have considered the following assumptions while conducting the
analysis:

• q is a finite field with the order 𝑞, where 𝑞 ≈ 280.
•  is a divisor of the hyperelliptic curve (HEC) selected from
the Jacobian group, which is the finite sum of points p𝑖 ∈ HEC
as:

 =
∑

p𝑖∈HEC

m𝑖p𝑖 (2)

where m𝑖 ∈ q.

Definition 1. Given (, 𝐴 = 𝑎 ⋅ , 𝐵 = 𝑏 ⋅ ) ∈  (), compute
𝑍 = 𝑎𝑏 ∈ .

The HC-CDHP assumption holds if: No probabilistic polynomial-
time (PPT) algorithm can solve the HC-CDHP by computing 𝑎𝑏 from
(, 𝑎, 𝑏) with non-negligible probability.

Definition 2. Suppose 𝜕 ∈ {1, 2, 3, 4, 5,… , 𝑞 − 1} is randomly picked.
The value of 𝛬 is calculated using Eq. (3).
𝛬 = 𝜕 ⋅ (3)

The probability of finding the value of 𝜕 from 𝛬 is negligible due to
the Hyperelliptic Curve Discrete Logarithm Problem (HE-CDLP).

3. Framework and security model of CLS-ET

The syntax of our scheme, ‘‘A Lightweight Certificateless Signcryp-
tion scheme with Equality Test (CLS-ET) for WBANs’’, is based on the
‘‘Efficient CL-PKC-ET for IoV’’ scheme [27]. The scheme consists of
eight algorithms: Setup, Private Number Generation, Partial Private
Key Generation, Full Key Generation, Certificateless Signcryption, Trap-
door, Test, and Certificateless Unsigncrypt. The first three roles, Setup,
Private Number Generation, and Partial Private Key Generation are
handled by the Key Generation Center (KGC), which is responsible for
performing these tasks. The second set of roles is assigned to the users,
who can perform Full Key Generation, Signcryption, Unsigncryption,
and Trapdoor generation. The final role is assigned to the Medical
Record Management Server (MRMS), a cloud server responsible for
storing and maintaining medical records from patients and medical
institutions, as well as performing Equality Tests on the signcrypted

Z. Ali et al. Computer Standards & Interfaces 96 (2026) 104070
data sent by patients and medical institutions. The functioning of the
scheme is illustrated in Fig. 2, with the data flow described as follows:
The KGC initializes the system parameters and distributes them to all
entities. Each user sends their identity to the KGC (See step 1), after
which the KGC generates and sends the partial private key to each user
(See step 2). The user then generates a full private key from this partial
key. Patients are equipped with various sensors that collect real-time
medical data and transfer it to a smart device/IoT (See step 3). The
collected data is then signcrypted and sent to the MRMS server (See
step 4). The user generates a trapdoor using their private key and
sends it to the MRMS along with the signcrypted data (See step 5).
Similarly, medical institutions also send signcrypted data along with
a trapdoor to the MRMS for the Equality Test. The MRMS has two
primary tasks: record management and performing Equality Tests. It
receives the signcrypted data and trapdoors from patients and medical
institutions and checks if the equality holds (See step 6). It then sends
the result, either ‘‘true’’ or ‘‘false’’, to the Medical Institution (See step
7). If the result is ‘‘true’’, the patient’s status is normal; if ‘‘false’’, the
patient’s status is abnormal and requires medical attention. In the case
of a ‘‘false’’ result, the MRMS sends the patient’s signcrypted data to
the Medical Institution for further analysis of the patient’s health (See
step 8).

Table 1 lists notable notations used in this scheme, and the descrip-
tions of each of these algorithms are provided below.

1. Setup: In this phase, the KGC randomly picks its master se-
cret key 𝛼 and publishes the system parameters params =
{HEC,𝑞 ,,1,2,3,4}.

2. Private Number Generation: In this phase, the KGC receives
the users’ IDs, randomly selects 𝛽.

3. Partial Private Key Generation: This phase is performed by the
KGC. It takes as input the user’s identity 𝐼𝐷𝑢 along with other
parameters, and then returns and sends the partial private key
𝜔 to all users according to their IDs via a secure channel.

4. Full Key Generation: This algorithm is performed by the users.
Each user receives their corresponding partial private key 𝜔 from
the KGC, computes the full private and public keys, and then
further checks the validity of the public and private keys.

5. Certificateless Signcryption: The sender executes this algo-
rithm. It utilizes the sender’s private key 𝑃𝑟𝑐𝑙𝑠, system param-
eters 𝑝𝑎𝑟𝑎𝑚𝑠, the recipient’s public encryption key 𝐸𝑃𝑏𝑐𝑙𝑢𝑠, and
the message 𝑀 to produce the signcrypted output 𝛺. The al-
gorithm integrates several security elements such as confiden-
tiality, integrity, non-repudiation, and authentication into one
logical process. The sender creates a ciphertext intended for the
receiver.

6. Trapdoor: This algorithm is performed by the users. The algo-
rithm takes input 𝑃𝑟𝑢 and generates trapdoor 𝑇𝑢 as output.

7. Test: The MRMS Server executes this algorithm by taking two
pairs of ciphertext-trapdoor (𝐶𝑇𝐴, 𝑇𝐴) and (𝐶𝑇𝐵 , 𝑇𝐵) from two
users with 𝐼𝐷𝐴 and 𝐼𝐷𝐵 , respectively. If the equality holds, it
returns an output of 1; otherwise, it returns 0.

8. Certificateless Unsigncrypt: This algorithm is performed by the
receiver. It takes as input the signcrypted ciphertext 𝛺, public
system parameters 𝑝𝑎𝑟𝑎𝑚𝑠, the receiver’s private key 𝑃𝑟𝑐𝑙𝑢𝑠 and
returns the original message 𝑀 . If 𝛺 is not invalid, it will return
the symbol ⊥.

3.1. Security model

This section establishes the security models for the proposed CLS-ET
scheme, specifically regarding the IND-CCA2, EUF-CMA, and OW-CCA2
security. Here,  refers to the challenger, while 1 and 2 represent
Type-I and Type-II adversaries involved. Let us play some games be-
tween Challenger  and Adversary 1 and 2 to prove the security of
our proposed scheme.
4
Fig. 2. Architecture of a lightweight certificateless signcryption scheme with
equality test for the WBANs.

Table 1
Notation used in this scheme.
 Notation Meaning
 𝑝𝑎𝑟𝑎𝑚𝑠 System parameters
 KGC Key Generation Center
 𝑖 𝑖th one-way hash function, where 𝑖 = 1, 2, 3
 𝑞 Finite field 𝑞 of order 𝑞
 𝑞 Large prime number
 𝛼 The secret key of KGC
  HEC’s Divisor
  The cyclic group of prime order 𝑞
 non Fresh nonce value
 𝐼𝐷𝑐𝑙𝑠, 𝐼𝐷𝑐𝑙𝑢𝑠 Identity of the Sender (signcrypter) and receiver

(unsigncrypter)

 𝑃𝑏𝑐𝑙𝑠, 𝑃𝑏𝑐𝑙𝑢𝑠 Public key of the Sender (signcrypter) and receiver
(unsigncrypter)

 𝑃𝑟𝑐𝑙𝑠, 𝑃𝑟𝑐𝑙𝑢𝑠 Private key of the Sender (signcrypter) and receiver
(unsigncrypter)

 𝐶𝑇 𝑢, 𝑇𝑢 Pairs of ciphertext-trapdoor from users
 𝑀 Message
 𝛺 Ciphertext (signcrypted message)
 ⊥ Decryption failure

Definition 3. It is possible for a signcryption scheme to achieve IND-
CCA2, if there exists 1 adversary, who can query 1, 2, 3, 4,
setup setup, private number generation PNG, partial private key gen-
eration PPKG, full key generation FKG, certificateless-signcryption
cls, and certificateless-unsigncryption clus oracles for ℎ1, ℎ2, ℎ3,
ℎ4, 𝑠𝑒𝑡𝑢𝑝, 𝑃𝑁𝐺, 𝑃𝑃𝐾𝐺, 𝐹𝐾𝐺, 𝑐𝑙𝑠, and 𝑐𝑙𝑢𝑠, respectively, who
is capable of winning the IND-CCA2 game in time 𝜖 with a success
probability 𝜏 in a probabilistic polynomial time.

• IND-CCA2 Game:
Setup: The setup algorithm is run by the challenger  and takes
the security parameter 𝜓 as input. 𝐶 picks a random number
as a secret key 𝑎 = 𝛼. Then pick four hash functions 1, 2,
3, and 4. Finally,  send some public parameters, such as
𝜓 ∈ {HEC,𝑞 , 𝐺,1, 2,3, 4} to 1.
Phase 1: 1 issues 𝑖 hash queries as (𝑖 = 1, 2, 3, 4), setup setup,
private number generation PNG, partial private key generation
PPKG, full key generation FKG, certificateless-signcryption cls,
and certificateless unsigncryption clus queries for sender iden-
tity ID𝑠 and randomly chosen message 𝑀 . In response to these
queries,  generates a private number, partial private key, and full

Z. Ali et al. Computer Standards & Interfaces 96 (2026) 104070
key for sender identity ID𝑠 and also answers the certificateless-
signcryption and certificateless unsigncryption queries and sends
the results to 1.
Challenge: 1 chooses two equal lengths but dissimilar types of
messages 𝑀1 and 𝑀2 and the sender’s identity ID′

𝑠 and sends
it to .  runs private number generation, partial private key
generation, and full key generation algorithms. Then randomly
selects a bit 𝑓 ∈ {0, 1} to produce certificateless-signcryption
ciphertext 𝛺′ and sends it to 1. Note that 𝑀1, 𝑀2, and ID′

𝑠
should be fresh and not from the pair (𝑀1, ID′

𝑠) or (𝑀2, ID′
𝑠).

Phase 2: In this phase, 1 makes the same queries as aforemen-
tioned in phase 1, except the certificateless unsigncryption query
clus for the targeted ciphertext 𝛺′.
Guess: 1 outputs a bit 𝑓 ′ ∈ {0, 1}, and if 𝑓 ′ = 𝑓 , then 1 has
succeeded. If 𝑓 ′ ≠ 𝑓 , then the algorithm terminates without any
output. The advantage of 1 winning the game is negligible.

Definition 4. It is possible for a signcryption scheme to achieve EUF-
CMA, if there exists 1 adversary, who can query 1, 2, 3, 4, setup
setup, private number generation PNG, partial private key genera-
tion PPKG, full key generation FKG, and certificateless-unsigncryption
clus oracles for ℎ1, ℎ2, ℎ3, ℎ4, 𝑠𝑒𝑡𝑢𝑝, 𝑃𝑁𝐺, 𝑃𝑃𝐾𝐺, 𝐹𝐾𝐺, and
𝑐𝑙𝑢𝑠, respectively, who is capable of winning the EUF-CMA game in
time 𝜖 with a success probability 𝜏 in a probabilistic polynomial time.

• EUF-CMA Game:
Setup: In this phase,  executes similar tasks as performed in the
Game IND-CCA2 setup phase.
Attack: 1 issues setup, PNG, PPKG, FKG, and cls queries
for sender identity ID𝑠 and randomly chosen message 𝑀 . In
response to these queries,  generates a private number, partial
private key, and full key for sender identity ID𝑠 and also runs
the certificateless-signcryption algorithm to generate ciphertext
𝛺, and sends it to 1.
Forgery: In response to the message 𝑀 ′, 1 outputs a
certificateless-signcrypted ciphertext and message pair (𝛺′,𝑀 ′).
For a sender with identity ID′

𝑠 and message 𝑀 ′, 1 can win
the game if 𝛺′ is a valid certificateless-signcrypted ciphertext,
provided that the sender’s private key and a tuple (𝑀 ′, ID′

𝑠) have
not been accessed before through any query.

Definition 5. In the proposed WBAN-19 scheme, the plaintext remains
secure even when the adversary possesses the trapdoor and the cor-
responding ciphertext. Thus, the scheme is considered one-wayness
under adaptive chosen ciphertext attack (OW-CCA2) in the random
oracle model, provided the advantage of adversary 2 in distinguishing
between messages is negligible

• OW-CCA2 Game:
Setup: The setup algorithm is run by the challenger  and takes
the security parameter 𝜓 as input. 𝐶 picks a random number
as a secret key 𝑎 = 𝛼. Then pick four hash functions 1, 2,
3, and 4. Finally,  send some public parameters, such as
𝜓 ∈ {HEC,𝑞 , 𝐺,1, 2,3, 4} to 2.
Phase 1: 2 issues 𝑖 hash queries as (𝑖 = 1, 2, 3, 4), setup
setup, private number generation PNG, partial private key gener-
ation PPKG, full key generation FKG, Trapdoor-Queries trapdoor,
and certificateless unsigncryption clus queries for sender iden-
tity ID𝑠 and randomly chosen message 𝑀 . In response to these
queries,  generates a private number, partial private key, and
full key for sender identity ID𝑠 and also answers the trapdoor and
certificateless unsigncryption queries and sends the results to 2.
Challenge: The challenger, 𝐶, randomly selects a plaintext mes-
sage 𝑀 ′ ∈ 𝑀 and computes the corresponding ciphertext tuple
𝛺 using the signcrypt algorithm. The ciphertext tuple 𝛺 is then
sent to the adversary  .
2

5
Phase 2: The challenger answers similarly to Phase 1; however,
during this phase, 2 is restricted from making queries related to
the secret key and the plaintext message.
Guess: The adversary 2 outputs a guess 𝑀 ′ for the original
plaintext message 𝑀 .

4. Proposed scheme

In this section, an efficient Certificateless Signcryption scheme with
the functionality of an equality test for WBAN is introduced. The
deployment of our scheme is shown in Fig. 3. A detailed mathematical
explanation of each algorithm employed in the scheme is provided
below.

• Setup: In this phase, the Key Generation Center (KGC) picks a
random number as a secret key 𝛼 ∈ {1, 2, 3,… , 𝑞 − 1}. Then,
KGC freely creates a set of public parameters, such as params =
{HEC,𝑞 ,,1,2,3,4} and 1,2,3,4 are random one-
way hash functions defined as: 1 ∶ {0, 1}′ → 𝑞 , 2 ∶  →

{0, 1}𝑘, 3 ∶  → {0, 1}𝑛, and 4 ∶ {0, 1}′ → 𝑞 , where
𝑘 = ⌈log2 𝑞⌉. Let 𝛷 ∶ 𝑞 → {0, 1}𝑘 be the function that maps
an integer to its binary representation padded to length 𝑘, and
𝛷−1 ∶ {0, 1}𝑘 → 𝑞 as its inverse.

• Private Number Generation: In this phase, KGC receives the
User’s IDs and randomly selects 𝛽 ∈ {1, 2, 3, … , 𝑞−1} as a private
number.

• Partial Private Key Generation: In this phase, KGC calculates
𝜔 = 𝛼 ⋅ 𝛽 (mod 𝑞) as a partial private key, and sends it to all the
users according to their IDs through a secure channel.

• Full Key Generation: Users receive their corresponding partial
private key 𝜔, and then it picks two random number 𝑥, 𝑦 ∈
{1, 2, 3,… , 𝑞−1} as its private key and calculates 𝛥 = 𝑦 ⋅𝜔 (mod 𝑞)
after that it calculate their public encryption key EPb𝑢 = 𝑦 ⋅ and
their full public and private keys as follows:
Pb𝑢 = 1(𝜔∥ID𝑢) ⋅ + 𝑥 ⋅

and

Pr𝑢 = 𝑥 ⋅ Pb𝑢.

The private key pair = (𝑦,Pr𝑢), and the public key pair =
(EPb𝑢,Pb𝑢) of the user.

• Certificateless Signcryption: In this phase, the certificateless
signcrypter takes as input its own private key Pr𝐴, the receiver’s
encryption public key EPb𝐵 , as well as a plaintext message 𝑀 . It
outputs a signcrypted tuple 𝛺 = {𝑈, 𝛤 , 𝑌 , 𝜇, 𝑉 } by following these
steps.
First, this algorithm randomly picks two numbers 𝑠𝑛, 𝜂𝑛 ∈
{1, 2, 3,… , 𝑞 − 1} and computes:
Compute 𝑚𝑛 = 4(𝑀𝑛)

𝑅𝑛 = (𝜂𝑛 ⋅ 𝛥) ⋅ Pb𝑛

𝑍𝑛 = 𝜂𝑛 ⋅ EPb𝐵

𝑌𝑛 = 4(𝑀𝑛) ⋅ 𝛥 ⋅ Pr𝐴

𝜇𝑛 = 𝜂𝑛 ⋅ 𝜔 (mod 𝑞)

𝑈𝑛 = 𝜂𝑛 ⋅

𝛤𝑛 = 𝛷(𝜂 ⋅ 𝑚𝑛)⊕2(𝑠𝑛 ⋅ 𝑅𝑛)

𝑉𝑛 = (𝑀𝑛∥nonce)⊕3(𝑌𝑛)⊕3(𝑍𝑛)

After making all the calculations, the certificateless signcrypter
sends the tuple 𝛺𝑛 = {𝑈𝑛, 𝛤𝑛, 𝑌𝑛, 𝜇𝑛, 𝑉𝑛} through a secure channel
to the certificateless unsigncrypter.

Z. Ali et al. Computer Standards & Interfaces 96 (2026) 104070
• Certificateless Unsigncryption: In this phase, the certificateless
unsigncrypter receives the tuple 𝛺𝑛 = {𝑈𝑛, 𝛤𝑛, 𝑌𝑛, 𝜇𝑛, 𝑉𝑛} and takes
its own private key 𝑦𝐵 , and calculates:
𝑍′
𝑛 = 𝑦𝐵 ⋅ 𝑈𝑛

If 𝑍′
𝑛 = 𝑍𝑛, then calculate:

𝑀 ′ = 𝑉 ⊕3(𝑌)⊕3(𝑍′)

Otherwise, abort this algorithm.
• Trapdoor: For the given (𝐶𝑇𝐴, 𝐼𝐷𝐴) and (𝐶𝑇𝐵 , 𝐼𝐷𝐵). The trap-
doors for users A and B are calculated by this algorithm, as
follows:

𝑇𝐴 = 𝑠𝐴 ⋅ Pr𝐴 and 𝑇𝐵 = 𝑠𝐵 ⋅ Pr𝐵 ,

where 𝑠𝐴 and 𝑠𝐵 are the random numbers chosen during signcryp-
tion by A and B, respectively.

• Test: For the given (𝐶𝑇𝐴, 𝑇𝐴) and (𝐶𝑇𝐵 , 𝑇𝐵). The entity 𝐸𝑇 runs
this algorithm as follows:

1. Compute: 𝛩𝐴 = 2(𝜇𝐴 ⋅ 𝑇𝐴) and 𝛩𝐵 = 2(𝜇𝐵 ⋅ 𝑇𝐵).
2. Compute 𝜒 ′

𝐴 = 𝛤𝐴 ⊕𝛩𝐴 and 𝜒 ′
𝐵 = 𝛤𝐵 ⊕𝛩𝐵 .

3. Compute 𝜒𝐴 = 𝛷−1(𝜒 ′
𝐴) and 𝜒𝐵 = 𝛷−1(𝜒 ′

𝐵).
4. 𝐸𝑇 checks if 𝜒𝐵 ⋅ 𝑈𝐴 = 𝜒𝐴 ⋅ 𝑈𝐵 holds. If the equivalence
holds, then the server will return 1. If not, the server will
return 0.

• Correctness: The proposed scheme demonstrates consistency
through the following proof:
(1) Signcryption:
𝑍′
𝑛 = 𝑦𝐵 ⋅ 𝑈𝑛

= 𝑦𝐵 ⋅ (𝜂𝑛 ⋅) = (𝜂𝑛 ⋅ 𝑦𝐵) ⋅ = 𝑍𝑛
and finally, calculates 𝑀 ′

𝑛:

𝑀 ′
𝑛 = 𝑉𝑛 ⊕3(𝑌𝑛)⊕3(𝑍′

𝑛)

= (𝑀𝑛∥nonce)⊕3(𝑌𝑛)⊕3(𝑍𝑛)⊕3(𝑌𝑛)⊕3(𝑍′
𝑛)

=𝑀𝑛∥nonce

since 𝑍′
𝑛 = 𝑍𝑛, so 3(𝑍′

𝑛) = 3(𝑍𝑛).
(2) Equality Test:
𝜒 ′
𝑛 = 𝛤𝑛 ⊕2(𝜇𝑛 ⋅ 𝑇𝑛)

= 𝛷(𝜂 ⋅ 𝑚)⊕2(𝑅𝑛 ⋅ 𝑠𝑛)⊕2(𝜇𝑛 ⋅ 𝑇𝑛)

= 𝛷(𝜂 ⋅ 𝑚)⊕2(𝑃𝑏𝑛 ⋅ 𝜂𝑛 ⋅ 𝛥 ⋅ 𝑠𝑛)⊕2(𝜂𝑛 ⋅ 𝜔 ⋅ 𝑠𝑛𝑃𝑟𝑛)

= 𝛷(𝜂 ⋅ 𝑚)⊕2(𝑃𝑏𝑛 ⋅ 𝜂𝑛 ⋅ 𝑦 ⋅ 𝜔 ⋅ 𝑠𝑛)⊕2(𝜂𝑛 ⋅ 𝜔 ⋅ 𝑠𝑛 ⋅ 𝑦 ⋅ 𝑃𝑏𝑛)

= 𝛷(𝜂 ⋅ 𝑚)⊕2(𝑃𝑏𝑛 ⋅ 𝜂𝑛 ⋅ 𝑦 ⋅ 𝜔 ⋅ 𝑠𝑛)⊕2(𝑃𝑏𝑛 ⋅ 𝜂𝑛 ⋅ 𝑦 ⋅ 𝜔 ⋅ 𝑠𝑛)

= 𝛷(𝜂 ⋅ 𝑚)

where 𝑚𝑛 = 4(𝑀𝑛), and since 𝑠𝑛 ⋅ 𝑅𝑛 = 𝜇𝑛 ⋅ 𝑇𝑛 (as shown in
analysis, due to commutative scalars), 2(𝑠𝑛 ⋅ 𝑅𝑛) = 2(𝜇𝑛 ⋅ 𝑇𝑛),
so:

𝜒 ′
𝑛 = 𝛷(𝜂𝑛 ⋅ 𝑚𝑛)⊕ 0 = 𝛷(𝜂𝑛 ⋅ 𝑚𝑛)

Then,

𝜒𝑛 = 𝛷−1(𝜒 ′
𝑛) = 𝜂𝑛 ⋅ 𝑚𝑛

Now, check:
𝜒𝐵 ⋅ 𝑈𝐴 = (𝜂𝐵 ⋅ 𝑚𝐵) ⋅ (𝜂𝐴 ⋅) = (𝜂𝐴𝜂𝐵𝑚𝐵) ⋅

𝜒𝐴 ⋅ 𝑈𝐵 = (𝜂𝐴 ⋅ 𝑚𝐴) ⋅ (𝜂𝐵 ⋅) = (𝜂𝐴𝜂𝐵𝑚𝐴) ⋅
Equality holds if 𝜂𝐴𝜂𝐵𝑚𝐵 = 𝜂𝐴𝜂𝐵𝑚𝐴, so 𝑚𝐵 = 𝑚𝐴, i.e., 4(𝑀𝐵) =
4(𝑀𝐴), implying 𝑀𝐴 = 𝑀𝐵 with high probability if 4 is
collision-resistant.
6
5. Security analysis

In the random oracle model, we can achieve IND-CCA2, EUF-CMA,
and OW-CCA2 using a cyclic group  of prime order 𝑞 and Divisor ,
as shown in the following two theorems [33,34]. In this section, we
discuss the formal security analyses of our proposed scheme based on
the Hyperelliptic Curve Computational Diffie–Hellman Problem (HC-
CDHP) assumptions.

Theorem 1. If a probabilistic polynomial-time (PPT) adversary 1 can
break the IND-CCA2 security of the proposed CLS-ET scheme with a non-
negligible advantage 𝜖, then a challenger  can be constructed to solve
the Hyperelliptic Curve Computational Diffie–Hellman Problem (HC-CDHP)
with an advantage.

𝜖′ ≥
(2𝜖 −clun∕𝑞2)
(ℎ2 +ℎ3)

𝜏′ ≈ 𝜏 + 𝜏𝜆(cls +clus +ℎ2 +ℎ3)

where 𝜏𝜆 is the average oracle query running time.

Proof. We will show that if such an adversary 1 exists, a challenger
 can use 1 as a subroutine to solve an instance of the HC-CDH
problem. The challenger  receives an instance of the HC-CDHP: a tuple
(, 𝐴 = 𝑎 ⋅, 𝐵 = 𝑏 ⋅) ∈  (), where  is a base divisor and 𝑎, 𝑏 are
unknown scalars. ’s goal is to compute 𝑍 = 𝑎𝑏. The challenger  is
interacting with 1 as.

Setup: This algorithm runs by the challenger  and takes the
security parameter params as input and does the following steps to
generate some public parameters. It defines the Hyper-elliptic curve
HEC∕𝑞 over prime finite field 𝑞 . Let  be a cyclic group over 𝑞 where
 is the Divisor of . Challenger picks a random number as a secret key
𝑎 = 𝛼. It also chooses four cryptographic hash functions, denoted as 1,
2, 3, and 4 modeled as a random oracle model (ROM). Finally, 
sends some public parameters for encryption and decryption, such as
params ∈ {HEC,𝑞 ,,1,2,3,4}, to 1.

Phase 1: In this phase, the adversary 1 issues some queries to
challenger , and  maintains four hash lists 𝑙𝑖𝑠𝑡1, 𝑙𝑖𝑠𝑡2, 𝑙𝑖𝑠𝑡3, 𝑙𝑖𝑠𝑡4 and
answers their queries as follows.

• 1 𝑄𝑢𝑒𝑟𝑖𝑒𝑠:  preserves the 𝑙𝑖𝑠𝑡1 of tuple (𝜔, ID𝑢) ∈ 𝑙𝑖𝑠𝑡1, and upon
1 Query, it checks (𝜔, ID𝑢) exists in 𝑙𝑖𝑠𝑡1 or not, if exists, then
the value of 1 from the 𝑙𝑖𝑠𝑡1 is returned otherwise, a random 1
∈ {1, 2, 3,… , 𝑞 − 1} is returned and added (𝜔, ID𝑢,1) to the 𝑙𝑖𝑠𝑡1.

• 2 𝑄𝑢𝑒𝑟𝑖𝑒𝑠:  preserves the 𝑙𝑖𝑠𝑡2 of tuple (𝑅𝑖) ∈ 𝑙𝑖𝑠𝑡2, and upon
2 Query, if 𝑅𝑖 exists in the list, returns the stored 𝜇𝑖 = 𝐻2(𝑅𝑖) to
𝐴. Otherwise randomly pick 𝜇𝑖 ∈ {0, 1}′ and returns 𝜇𝑖 = 𝐻2(𝑅𝑖)
and added (𝑅𝑖, 𝜇𝑖,2) to the 𝑙𝑖𝑠𝑡2.

• 3 𝑄𝑢𝑒𝑟𝑖𝑒𝑠:  preserves the 𝑙𝑖𝑠𝑡3 of tuple (𝑌𝑖) ∈ 𝑙𝑖𝑠𝑡3, and upon
3 Query, if 𝑌𝑖 exists in the list, returns the stored 𝜆𝑖 = 𝐻3(𝑌𝑖) to
𝐴. Otherwise randomly pick 𝜆𝑖 ∈ {0, 1}′ and returns 𝜆𝑖 = 𝐻3(𝑌𝑖)
and added (𝑌𝑖, 𝜆𝑖,3) to the 𝑙𝑖𝑠𝑡3.

• 4 Queries:  preserves the list4 of tuples 4(𝑀) ∈ list4, and
upon a 4 query, it checks whether 4(𝑀) exists in list1. If it
exists, the value of 4 from list4 is returned; otherwise, a random
4 ∈ {1, 2, 3,… , 𝑞 − 1} is returned and 4(𝑀) is added to list4.

•  𝑄𝑢𝑒𝑟𝑖𝑒𝑠: When 1 queries for a private number for an
identity 𝐼𝐷𝑢:  generates a random integer 𝛽𝑢 ∈ {1, 2,… , 𝑞 − 1}.
It stores the pair (𝐼𝐷𝑢, 𝛽𝑢) in the list 𝐿PNG and returns 𝛽𝑢 to 1.

•  𝑄𝑢𝑒𝑟𝑖𝑒𝑠: When 1 queries for the partial private key for
an identity 𝐼𝐷𝑢:

– If 𝐼𝐷𝑢 = 𝐼𝐷′
𝑠,  must abort the simulation. The EUF-CMA

security model forbids the adversary from requesting the
private key (or its components) of the identity it intends to
attack.

Z. Ali et al. Computer Standards & Interfaces 96 (2026) 104070
Fig. 3. Deployment of the proposed CLS-ET scheme.
– If 𝐼𝐷𝑢 ≠ 𝐼𝐷′
𝑠,  generates a random integer 𝜔′

𝑢 ∈
{1, 2,… , 𝑞−1}, stores the tuple (𝐼𝐷𝑢, 𝜔′

𝑢) in 𝐿Key, and returns
𝜔′
𝑢 to 1.

•  𝑄𝑢𝑒𝑟𝑖𝑒𝑠: When 1 requests the public key for an identity
𝐼𝐷𝑢:

– If 𝐼𝐷𝑢 = 𝐼𝐷′
𝑠, the challenger embeds the second part of the

HC-CDHP instance. It sets the public key 𝑃𝑏′𝑠 = 𝐵 = 𝑏.
It returns 𝑃𝑏′𝑠 to 1.  does not know the corresponding
private key, which is expected.

– If 𝐼𝐷𝑢 ≠ 𝐼𝐷′
𝑠,  generates a complete, valid key pair. It

chooses random secrets 𝑥𝑢, 𝑦𝑢 ∈ {1, 2,… , 𝑞 − 1}. It uses the
simulated partial private key 𝜔′

𝑢 from the 𝑄PPKG simulation
to compute the public key 𝑃𝑏𝑢 = 1(𝜔′

𝑢∥𝐼𝐷𝑢) + 𝑥𝑢.
The full private key is 𝑃𝑟𝑢 = 𝑥𝑢 ⋅ 𝑃𝑏𝑢.  stores all these
components in 𝐿Key and returns the public parts to 1.

• Certificateless Signcryption Queries: When 1 issues a signcryp-
tion query,

– 𝐶 checks if ID𝑢 = ID′
𝑢, then  embed the HC-CDH problem

part in Pb𝑢 as Pb𝑢 = 1(𝜔∥ID𝑢) ⋅  + 𝐵 and compute the
remaining ciphertext part as calculated in the real signcryp-
tion algorithm and return the certificateless-signcryption
tuple 𝛺′ = {𝑈 ′, 𝛤 ′, 𝑌 ′, 𝜇′, 𝑉 ′} to 1.

– 𝐶 checks if ID𝑢 ≠ ID′
𝑢, then it picks two numbers 𝑠, 𝜂 ∈

{1, 2, 3,… , 𝑞−1} and computes: 𝑚 = 4(𝑀), 𝑅 = (𝜂 ⋅𝛥) ⋅Pb𝑛,
𝑍 = 𝜂 ⋅ EPb𝐵 , 𝑌 = 1(𝑀) ⋅ 𝛥 ⋅ Pr𝐴, 𝜇 = 𝜂 ⋅ 𝜔 (mod 𝑞),
𝑈 = 𝜂 ⋅ , 𝛤 = bin(𝜂 ⋅ 𝑚), ⊕2(𝑠 ⋅ 𝑅) where 𝑚𝑛 =
4(𝑀𝑛), 𝑉 = (𝑀∥nonce) ⊕ 3(𝑌) ⊕ 3(𝑍), and sends the
certificateless-signcryption tuple 𝛺 = {𝑈, 𝛤 , 𝑌 , 𝜇, 𝑉 } to 1.

• Certificateless Unsigncryption Queries: When 1 issues a unsign-
cryption query,  checks if ID𝑢 ≠ ID′

𝑢, then 𝑀 is returned.
Otherwise, the following steps are performed:

1. Calculates 𝑍′ = 𝑦𝐵 ⋅ 𝑈 .
2. Finally, computes the message 𝑀 ′ = 𝑉 ⊕3(𝑌)⊕3(𝑍′)
and return it to 1.
7
Challenge: 𝑀1 and 𝑀2 are two equal-length but dissimilar mes-
sages chosen by 1. 1 also chooses the sender’s identity ID′

𝑠 and
sends it to . Upon receiving the messages 𝑀1 and 𝑀2 and identity
ID′

𝑠,  randomly selects a bit 𝑓 ∈ {0, 1} and produces a certificateless-
signcryption tuple 𝛺′ = {𝑈 ′, 𝛤 ′, 𝑌 ′, 𝜇′, 𝑉 ′} for the message 𝑀𝑓 using
the following process: First,  embed the HC-CDH problem part in
Pb𝑢 as Pb𝑢 = 1(𝜔∥ID𝑢) ⋅  + 𝐵, then it randomly picks two numbers
𝑠, 𝜂 ∈ {1, 2, 3,… , 𝑞 − 1} and computes: Compute 𝑚′ = 4(𝑀), 𝑅′ =
(𝜂 ⋅ 𝛥) ⋅ Pb𝑛, 𝑍′ = 𝜂 ⋅ EPb𝐵 , 𝑌 ′ = 1(𝑀) ⋅ 𝛥 ⋅ Pr𝐴, 𝜇′ = 𝜂 ⋅ 𝜔 (mod 𝑞),
𝑈 ′ = 𝜂 ⋅, 𝛤 ′ = 𝛷(𝜂 ⋅𝑚)⊕2(𝑠 ⋅𝑅), 𝑉 ′ = (𝑀∥nonce)⊕3(𝑌)⊕3(𝑍),
after making all the calculations, the certificateless-signcrypter sends
the tuple 𝛺′ = {𝑈 ′, 𝛤 ′, 𝑌 ′, 𝜇′, 𝑉 ′} to 1.

Phase 2: In this phase, 1 made the identical queries as aforemen-
tioned in Phase 1, except the certificateless unsigncryption query clus
for the targeted ciphertext 𝛺′ = {𝑈 ′, 𝛤 ′, 𝑌 ′, 𝜇′, 𝑉 ′}.  answers all the
queries upon receiving them from 1 except clus with ID′

cls.
Guess: 1 outputs a bit 𝑓 ′ ∈ {0, 1}, and if 𝑓 ′ = 𝑓 , then it is clear that

1 has succeeded and can calculates 𝑍′ = 𝑦𝐵 ⋅𝑈𝑛, 𝑌𝑛 = 4(𝑀𝑛) ⋅𝛥 ⋅𝑃𝑟𝐴,
and 𝑉𝑛 = (𝑀𝑛,nonce) ⊕ 3(𝑌𝑛) + 3(𝑍𝑛), and Finally, can computes
the message 𝑀 ′

𝑛 = 𝑉𝑛 ⊕ 3(𝑌𝑛) ⊕ 3(𝑍′
𝑛). The following equation can

achieve the HC-CDHP solution: 𝑇 = (𝜂𝑦𝛽)−1(𝑅 − 𝜂𝛥1(𝜔∥𝐼𝐷) ⋅), it is
easy to deduce that 𝑇 = 𝑎𝑏 if 𝑅 = (𝜂 ⋅ 𝛥) ⋅ Pb Therefore, the CLS-ET
scheme is secure against IND-CCA2.

Theorem 2. If the HC-CDHP assumption holds in the Jacobian group of
the hyperelliptic curve, then the proposed CLS-ET scheme is secure against
EUF-CMA in the Random Oracle Model (ROM).

Proof. Let 1 be a probabilistic polynomial-time (PPT) adversary that
can break the EUF-CMA security of the scheme with a non-negligible
advantage 𝜖. We will construct a challenger  that can use 1 to solve
an instance of the HC-CDHP. The challenger  is given an HC-CDHP
instance, which is a tuple (𝐷,𝐴 = 𝑎, 𝐵 = 𝑏), and its goal is to
compute 𝑍 = 𝑎𝑏.

Setup:  takes the HC-CDHP instance (𝐷,𝐴,𝐵). It sets the KGC’s
master public key 𝑃pub = 𝐴 = 𝑎. This implicitly sets the KGC’s
master secret key 𝛼 to the unknown value 𝑎.  randomly selects a
target identity 𝐼𝐷′

𝑠 from the space of possible identities. This is the
identity for which 1 will attempt to create a forgery.  initializes
empty lists to simulate the random oracles: 𝐿1, 𝐿2, 𝐿3, 𝐿4 for the hash
functions  , , , , respectively. It also initializes a list 𝐿 to
1 2 3 4 PNG

Z. Ali et al. Computer Standards & Interfaces 96 (2026) 104070
track private numbers and 𝐿Key to track generated keys.  sends the
system parameters params (including 𝑃pub) to the adversary 1.

Queries (Attack Phase) 1 can issue a polynomial number of
queries, which  answers as follows.

• 𝐻𝑎𝑠ℎ 𝑄𝑢𝑒𝑟𝑖𝑒𝑠:  respond to all the 1,2,3,4, hash queries
as in Theorem 1.

•  𝑄𝑢𝑒𝑟𝑖𝑒𝑠: When 1 queries for a private number for an
identity 𝐼𝐷𝑢:  generates a random integer 𝛽𝑢 ∈ {1, 2,… , 𝑞 − 1}.
It stores the pair (𝐼𝐷𝑢, 𝛽𝑢) in the list 𝐿PNG and returns 𝛽𝑢 to 1.

•  𝑄𝑢𝑒𝑟𝑖𝑒𝑠: When 1 queries for the partial private key for
an identity 𝐼𝐷𝑢:

– If 𝐼𝐷𝑢 = 𝐼𝐷′
𝑠,  must abort the simulation. The EUF-CMA

security model forbids the adversary from requesting the
private key (or its components) of the identity it intends to
attack.

– If 𝐼𝐷𝑢 ≠ 𝐼𝐷′
𝑠,  generates a random integer 𝜔′

𝑢 ∈
{1, 2,… , 𝑞−1}, stores the tuple (𝐼𝐷𝑢, 𝜔′

𝑢) in 𝐿Key, and returns
𝜔′
𝑢 to 1.

•  𝑄𝑢𝑒𝑟𝑖𝑒𝑠: When 1 requests the public key for an identity
𝐼𝐷𝑢:

– If 𝐼𝐷𝑢 = 𝐼𝐷′
𝑠, the challenger embeds the second part of the

HC-CDHP instance. It sets the public key 𝑃𝑏′𝑠 = 𝐵 = 𝑏.
It returns 𝑃𝑏′𝑠 to 1.  does not know the corresponding
private key, which is expected.

– If 𝐼𝐷𝑢 ≠ 𝐼𝐷′
𝑠,  generates a complete, valid key pair. It

chooses random secrets 𝑥𝑢, 𝑦𝑢 ∈ {1, 2,… , 𝑞 − 1}. It uses the
simulated partial private key 𝜔′

𝑢 from the 𝑄PPKG simulation
to compute the public key 𝑃𝑏𝑢 = 1(𝜔′

𝑢∥𝐼𝐷𝑢) + 𝑥𝑢.
The full private key is 𝑃𝑟𝑢 = 𝑥𝑢 ⋅ 𝑃𝑏𝑢.  stores all these
components in 𝐿Key and returns the public parts to 1.

• Certificateless Signcryption Queries: When 1 issues a signcryp-
tion query,

– 𝐶 checks if ID𝑢 = ID′
𝑢, then  embeds the second part

of the HC-CDHP instance. It sets the public key 𝑃𝑏′𝑠 =
𝐵 = 𝑏, and compute the remaining ciphertext part as
calculated in the real signcryption algorithm and return the
certificateless-signcryption tuple 𝛺 = {𝑈, 𝛤 , 𝑌 , 𝜇, 𝑉 } to 1.

– If 𝐼𝐷𝑠 ≠ 𝐼𝐷′
𝑠,  has all the necessary key components

(stored in 𝐿Key) for the sender 𝐼𝐷𝑠. It follows the certifi-
cateless signcryption algorithm in the paper to generate a
valid tuple 𝛺 and returns it to 1.

Forgery: After making its queries, the adversary 1 outputs a forged
signcryption tuple 𝛺′ = (𝑈 ′, 𝛤 ′, 𝑌 ′, 𝜇′, 𝑉 ′) for a new message 𝑀 ′

under the target sender identity 𝐼𝐷′
𝑠. For the forgery to be valid: The

signcryption tuple 𝛺′ must be verifiable as correct. 1 must not have
queried the partial private key for 𝐼𝐷′

𝑠. 1 must not have requested a
signcryption for the pair (𝑀 ′, 𝐼𝐷′

𝑠) from the 𝑄cls oracle.
Analysis: Now, the challenger  uses the forged tuple 𝛺′ to com-

pute 𝑎𝑏. From the forgery,  parses the component 𝑌 ′. According
to the signcryption algorithm, this component is calculated as: 𝑌 ′ =
1(𝑀 ′) ⋅ 𝛥′ ⋅ 𝑃𝑟′𝑠. Once  determines the combined term 𝐾 = (1(𝑀 ′) ⋅
𝑦′𝑠 ⋅ 𝑥

′
𝑠 ⋅ 𝛽

′
𝑠), it can compute the solution to the HC-CDHP instance by

calculating: 𝑎𝑏 = 𝐾−1 ⋅ 𝑌 ′. Since the adversary 1 can produce a
valid forgery with non-negligible probability 𝜖, the challenger  can
successfully solve the HC-CDHP instance with a related non-negligible
probability. This contradicts the assumption that the HC-CDHP is hard.
Therefore, no such adversary 1 can exist, and the CLS-ET scheme is
secure against EUF-CMA.
8
Theorem 3. If the HC-CDHP assumption holds in the Jacobian group of
the hyperelliptic curve, then the proposed CLS-ET scheme is secure against
OW-CCA2 in the Random Oracle Model (ROM).

Proof. Assume that 2 is a PPT adversary capable of breaking the OW-
CCA2 security of our scheme with non-negligible advantage 𝜖. Suppose
there exists a challenger  who claims to solve HC-CDHP in polynomial
time using 2 as a subroutine. Then, 2 and  engage in the following
OW-CCA2 security game as.

Setup: The challenger  receives an instance of the HC-CDHP: a
tuple (, 𝐴 = 𝑎 ⋅, 𝐵 = 𝑏 ⋅) ∈  (), where  is a base divisor and 𝑎, 𝑏
are unknown scalars. ’s goal is to compute 𝑍 = 𝑎𝑏. This algorithm
runs by the challenger  and picks a random number as a secret key
𝑎 = 𝛼. It also chooses four cryptographic hash functions, denoted as 1,
2, 3, and 4 modeled as a random oracle model (ROM). Finally, 
sends some public parameters for encryption and decryption, such as
params ∈ {HEC,𝑞 ,,1,2,3,4}, to 2.

Query Phase: 2 adaptively queries the following oracles:

• 1 𝑄𝑢𝑒𝑟𝑦: If (𝜔, 𝐼𝐷𝑢, ℎ1) ∈ 𝐿1
, return ℎ1. Else, pick ℎ1 ∈ F𝑞 ,

store (𝜔, 𝐼𝐷𝑢, ℎ1), and return ℎ1.
• 2 𝑄𝑢𝑒𝑟𝑦: If (𝑅𝑖, 𝜇𝑖, ℎ2) ∈ 𝐿2

, return ℎ2. Else, pick ℎ2 ∈ F𝑞 , store
(𝑅𝑖, 𝜇𝑖, ℎ2), and return ℎ2.

• 3 𝑄𝑢𝑒𝑟𝑦: If (𝑌𝑖, 𝜆𝑖, ℎ3) ∈ 𝐿3
, return ℎ3. Else, pick ℎ3 ∈ F𝑞 , store

(𝑌𝑖, 𝜆𝑖, ℎ3), and return ℎ3.
• 4 𝑄𝑢𝑒𝑟𝑦: If (𝑀,ℎ4) ∈ 𝐿4

, return ℎ4. Else, pick ℎ4 ∈ F𝑞 , store
(𝑀,ℎ4), and return ℎ4.

•  𝑄𝑢𝑒𝑟𝑖𝑒𝑠: When 2 queries for a private number for an
identity 𝐼𝐷𝑢:  generates a random integer 𝛽𝑢 ∈ {1, 2,… , 𝑞 − 1}.
It stores the pair (𝐼𝐷𝑢, 𝛽𝑢) in the list 𝐿PNG and returns 𝛽𝑢 to 2.

•  𝑄𝑢𝑒𝑟𝑖𝑒𝑠: When 2 queries for the partial private key for
an identity 𝐼𝐷𝑢:

– If 𝐼𝐷𝑢 = 𝐼𝐷′
𝑠,  must abort the simulation. The EUF-CMA

security model forbids the adversary from requesting the
private key (or its components) of the identity it intends to
attack.

– If 𝐼𝐷𝑢 ≠ 𝐼𝐷′
𝑠,  generates a random integer 𝜔′

𝑢 ∈
{1, 2,… , 𝑞−1}, stores the tuple (𝐼𝐷𝑢, 𝜔′

𝑢) in 𝐿Key, and returns
𝜔′
𝑢 to 2.

•  𝑄𝑢𝑒𝑟𝑖𝑒𝑠: When 2 requests the public key for an identity
𝐼𝐷𝑢:

– If 𝐼𝐷𝑢 = 𝐼𝐷′
𝑠, the challenger embeds the second part of the

HC-CDHP instance. It sets the public key 𝑃𝑏′𝑠 = 𝐵 = 𝑏.
It returns 𝑃𝑏′𝑠 to 2.  does not know the corresponding
private key, which is expected.

– If 𝐼𝐷𝑢 ≠ 𝐼𝐷′
𝑠,  generates a complete, valid key pair. It

chooses random secrets 𝑥𝑢, 𝑦𝑢 ∈ {1, 2,… , 𝑞 − 1}. It uses the
simulated partial private key 𝜔′

𝑢 from the 𝑄PPKG simulation
to compute the public key 𝑃𝑏𝑢 = 1(𝜔′

𝑢∥𝐼𝐷𝑢) + 𝑥𝑢.
The full private key is 𝑃𝑟𝑢 = 𝑥𝑢 ⋅ 𝑃𝑏𝑢.  stores all these
components in 𝐿Key and returns the public parts to 2.

• Trapdoor Queries: When 2 submits a ciphertext tuple 𝛺 ≠ 𝛺′,
the challenger  returns the trapdoor 𝑇𝑛 = 𝑠 ⋅ Pr to 2.

• Certificateless Unsigncryption Queries: When 2 issues a unsign-
cryption query,  checks if ID𝑢 ≠ ID′

𝑢, then 𝑀 is returned.
Otherwise, the following steps are performed:

1. Calculates 𝑍′ = 𝑦𝐵 ⋅ 𝑈 .
2. Finally, computes the message 𝑀 ′ = 𝑉 ⊕3(𝑌)⊕3(𝑍′)
and return it to 2.

Z. Ali et al. Computer Standards & Interfaces 96 (2026) 104070
Fig. 4. Comparison of computational cost: (a) Time for encryption, (b) Time for decryption, and (c) Time for test.
Fig. 5. Comparison of communication cost.

Challenge: 𝑀1 and 𝑀2 are two equal-length but dissimilar mes-
sages chosen by 2. 2 also chooses the sender’s identity ID′

𝑠 and
sends it to . Upon receiving the messages 𝑀1 and 𝑀2 and identity
ID′

𝑠,  randomly selects a bit 𝑓 ∈ {0, 1} and produces a certificateless-
signcryption tuple 𝛺′ = {𝑈 ′, 𝛤 ′, 𝑌 ′, 𝜇′, 𝑉 ′} for the message 𝑀𝑓 using
the following process: First,  embed the HC-CDH problem part in
Pb𝑢 as Pb𝑢 = 1(𝜔∥ID𝑢) ⋅  + 𝐵, then it randomly picks two numbers
𝑠, 𝜂 ∈ {1, 2, 3,… , 𝑞 − 1} and computes: Compute 𝑚′ = 4(𝑀), 𝑅′ =
(𝜂 ⋅ 𝛥) ⋅ Pb𝑛, 𝑍′ = 𝜂 ⋅ EPb𝐵 , 𝑌 ′ = 1(𝑀) ⋅ 𝛥 ⋅ Pr𝐴, 𝜇′ = 𝜂 ⋅ 𝜔 (mod 𝑞),
𝑈 ′ = 𝜂 ⋅, 𝛤 ′ = 𝛷(𝜂 ⋅𝑚)⊕2(𝑠 ⋅𝑅), 𝑉 ′ = (𝑀∥nonce)⊕3(𝑌)⊕3(𝑍),
after making all the calculations, the certificateless-signcrypter sends
the tuple 𝛺′ = {𝑈 ′, 𝛤 ′, 𝑌 ′, 𝜇′, 𝑉 ′} to 2.

Phase 2: In this phase, 2 made the identical queries as aforemen-
tioned in Phase 1, except the certificateless unsigncryption query clus
for the targeted ciphertext 𝛺′ = {𝑈 ′, 𝛤 ′, 𝑌 ′, 𝜇′, 𝑉 ′}.  answers all the
queries upon receiving them from 2 except clus with ID′

cls.
Guess: 2 outputs a bit 𝑓 ′ ∈ {0, 1}, and if 𝑓 ′ = 𝑓 , then it is clear that

2 has succeeded and can calculates 𝑍′ = 𝑦𝐵 ⋅𝑈𝑛, 𝑌𝑛 = 4(𝑀𝑛) ⋅𝛥 ⋅𝑃𝑟𝐴,
and 𝑉𝑛 = (𝑀𝑛,nonce) ⊕ 3(𝑌𝑛) + 3(𝑍𝑛), and Finally, can computes
the message 𝑀 ′

𝑛 = 𝑉𝑛 ⊕ 3(𝑌𝑛) ⊕ 3(𝑍′
𝑛). The following equation can

achieve the HC-CDHP solution: 𝑇 = (𝜂𝑦𝛽)−1(𝑅 − 𝜂𝛥1(𝜔∥𝐼𝐷) ⋅), it is
easy to deduce that 𝑇 = 𝑎𝑏 if 𝑅 = (𝜂 ⋅ 𝛥) ⋅ Pb Therefore, the CLS-ET
scheme is secure against OW-CCA2.

6. Test environment

6.1. Measurement tools

We used the charm-crypto library [35], the PBC library [36], and
the G2HEC library [37] for benchmarking purposes. The code is mostly
written in Python and C coding languages. The charm-crypto library is
a Python-based library that internally utilizes other libraries such as the
PBC library [36], the GMP library [38], and the OpenSSL library [39]
to provide secure arithmetic operations and cryptographic parameters
necessary for cryptographic schemes. We chose to use the charm-crypto
library because it contains a vast collection of cryptographic primitives
9
Table 2
Average running times of various operations.
 Symbols Operations Laptop 4200U @ 2.6 GHz
 Mul Point multiplication 0.11912 ms
 Exp Exponential operation 0.42102 ms
 Pairing Pairing operation 1.26010 ms
 Dmul Divisor multiplication 0.06069 ms

and functions, greatly simplifying the implementation process. For the
calculation of hyperelliptic curve divisor multiplication operation, the
libg2hec library [37] version 1.0.1 was used, which internally utilizes
the NTL library [40]. Python was chosen as the programming language
because it is fully compatible with the charm-crypto library and offers
ease of use and simplicity. To ensure maximum compatibility, we are
using version 0.50 of the charm-crypto library and Python version
3.7, as this is the latest version of Python that is compatible with the
charm-crypto library.

6.2. Measurement environment

A laptop PC with an Intel Core i5-4200U Processor running @
2.6 GHz with 8 GB DDR3L RAM was configured as a test environment.
The system was installed with the Linux-based Ubuntu 19.10 64-bit
operating system, which comes with pre-installed Python 3.7. Ubuntu
OS was chosen because it is a free and open-source operating system
known for its user-friendly interface and extensive community support.

6.3. Measurement technique

To compute the computational cost of different cryptographic op-
erations such as Pairing, Point Multiplication (Mul), Exponentiation
(Exp), and HEC Divisor Multiplication (Dmul), we run the benchmark
test. After getting the costs of these cryptographic operations, as pro-
vided in Table 2, the number of different types of operations each
scheme uses is counted. Then, to compute the computational cost of
each scheme, we multiplied the computed value of each cryptographic
operation by the number of different operations each scheme uses to
get the overall cost of each scheme.

7. Performance analysis

In this section, a comparison is made between the proposed CLS-
ET scheme and other alternative schemes proposed by T.T. Tsai [22],
R. Elhabob [27], J. Tian [26], and M. Ramadan [11] in terms of
computation cost, communication cost, and functionality.

7.1. Computational cost

The Table 3 compares different schemes based on their computa-
tional costs for Encryption/Signcryption, Decryption/Unsigncryption,
and Equality test phases. The detailed features of each scheme are pre-
sented in Table 5. When compared with the schemes of T.T. Tsai [22],

Z. Ali et al. Computer Standards & Interfaces 96 (2026) 104070
Table 3
Detailed comparison of computational cost in milliseconds.
 Schemes Encryption Decryption Test
 T.T. Tsai [22] 2 ⋅Pairing + 5 ⋅Exp (4.625 ms) 2 ⋅Pairing + 2 ⋅Exp (3.362 ms) 4 ⋅Pairing (5.040 ms)
 R. Elhabob [27] 2 ⋅Exp + 2 ⋅Mul (1.080 ms) 2 ⋅Pairing + 1 ⋅Mul (2.639 ms) 2 ⋅Pairing + 2 ⋅Exp (3.362 ms)
 J. Tian [26] 7 ⋅Mul (0.834 ms) 6 ⋅Mul (0.715 ms) 6 ⋅Mul (0.715 ms)
 M. Ramadan [11] 3 ⋅Mul + 1 ⋅Exp + 1 ⋅Pairing (2.039 ms) 4 ⋅Pairing (5.040 ms) 3 ⋅Pairing (3.780 ms)
 Our scheme 8 ⋅Dmul (0.486 ms) 1 ⋅Dmul (0.061 ms) 4 ⋅Dmul (0.243 ms)
Table 4
Communication cost comparison in bits.
 Schemes Communication cost Communication cost in bits
 T.T. Tsai [22] 1(ID) + 1(K) + 2(M) + 1(TD) + 1(ET) 1(256) + 1(256) + 2(100) + 1(256) + 1(1) (969 bits)
 R. Elhabob [27] 1(ID) + 1(K) + 2(M) + 1(TD) + 1(ET) 1(256) + 1(256) + 2(100) + 1(256) + 1(1) (969 bits)
 J. Tian [26] 1(ID) + 1(K) + 2(M) + 1(TD) + 1(ET) 1(160) + 1(160) + 2(100) + 1(160) + 1(1) (681 bits)
 M. Ramadan [11] 1(ID) + 1(K) + 2(M) + 1(TD) + 1(ET) 1(160) + 1(160) + 2(100) + 1(160) + 1(1) (681 bits)
 Our scheme 1(ID) + 1(K) + 2(M) + 1(TD) + 1(ET) 1(80) + 1(80) + 2(100) + 1(80) + 1(1) (441 bits)
R. Elhabob [27], J. Tian [26], and M. Ramadan [11], our scheme
reduces the computation cost in the Encryption/Signcryption phase by
89.49%, 55.00%, 41.72%, and 76.16% respectively. Similarly, during
the Decryption/Unsigncryption phase, our scheme achieves a reduc-
tion in computation cost by 98.19%, 97.69%, 91.47%, and 98.79%,
respectively. Moreover, our scheme reduces the computation cost in the
Equality Test phase, by 95.18%, 92.77%, 66.01% and 93.57%, respec-
tively. Our proposed scheme employs Hyperelliptic Curve Cryptogra-
phy (HECC) with an 80-bit key size and does not require any Pairing
operations. By analyzing Table 3 and the accompanying Fig. 4, it be-
comes evident that Our scheme stands with significantly reduced com-
putational requirements in comparison to the other schemes. It achieves
Encryption/Signcryption with 8 ⋅ Dmul (0.486 ms), Decryption/Un-
signcryption with 1 ⋅ Dmul (0.061 ms), and Equality Testing with 4
⋅ Dmul (0.243 ms), making it more efficient for resource-constrained
IoT-enabled WSNs.

7.2. Communication cost

The communication cost of various schemes is compared in Ta-
ble 4. In all schemes, the message length was consistently set at
100 bits. Upon analyzing Table 4 and the accompanying Fig. 5, it
becomes evident that our scheme significantly outperforms others in
terms of communication cost reduction, and when compared with M.
Ramadan [11] and J. Tian [26], our scheme boasts an impressive
35.24% reduction. Moreover, in comparison with T.T. Tsai [22] and
R. Elhabob [27], our scheme demonstrates a remarkable 54.49% re-
duction in communication cost. These results highlight the significant
efficiency of our scheme in terms of communication costs.

7.3. Property comparison

The Table 5 shows the comparison of different proposed schemes for
addressing issues related to the use of cloud computing in IoT-enabled
WSNs. The schemes are evaluated based on the type of cryptosys-
tem used, as well as various features such as keyword search (KS)
and equality testing (ET). The Table 5 also indicates whether each
scheme addresses key escrow (KEP) and certificate management prob-
lems (CMP) and whether it supports equality testing. Our proposed
scheme encompasses all major features and, being based on Certifi-
cateless Cryptography (CLC), effectively addresses key escrow and
certificate management problems.

8. Conclusion

In this work, we proposed a lightweight certificateless signcryption
scheme with equality test (CLS-ET) for WBANs. Our scheme incor-
porates the notions of certificateless Signcryption with the Equality
10
Table 5
Feature comparison of different proposed schemes.
 Schemes Cryptosystem KS ET Fix

KEP
Fix
CMP

 T.T. Tsai [22] IBC-based ✓ ✓ × ✓
 R. Elhabob [27] CLC-based ✓ ✓ ✓ ✓
 J. Tian [26] CLC-based ✓ ✓ ✓ ✓
 M. Ramadan [11] IBC-based ✓ ✓ × ✓
 Our scheme CLC-based ✓ ✓ ✓ ✓

Test, enabling the test between two ciphertexts encrypted under the
same or different public keys. Our scheme is constructed under the
certificateless cryptosystem (CLC), thereby addressing the Certificate
management problem. Moreover, our proposed scheme fixes the inher-
ent key escrow problem of ID-based encryption (IBE). We performed
a security analysis on our proposed scheme and achieved IND-CCA2,
EUF-CMA, and OW-CCA2 levels of security in the Random Oracle
Model (ROM). Furthermore, we compared our proposed scheme with
other existing state-of-the-art schemes. By minimizing computational
costs and communication costs while maintaining security and func-
tionality, our scheme exhibits significantly lower computational costs
for encryption, decryption, and testing stages, thus enhancing efficiency
in resource-constrained IoT-enabled WSNs.

CRediT authorship contribution statement

Zohaib Ali: Writing – review & editing, Writing – original draft,
Software, Resources, Project administration, Methodology, Investiga-
tion, Funding acquisition, Formal analysis, Data curation, Conceptu-
alization. Junaid Hassan: Writing – review & editing, Methodology,
Funding acquisition, Data curation. Muhammad Umar Aftab: Visual-
ization, Validation, Supervision, Funding acquisition. Negalign Wake
Hundera: Visualization, Validation, Supervision, Project administra-
tion. Huiying Xu: Visualization, Validation, Supervision, Funding ac-
quisition. Xinzhong Zhu: Visualization, Validation, Supervision, Fund-
ing acquisition.

Ethical compliance

This research does not involve human participants, animals, or
sensitive personal data. Hence, ethical approval was not required. The
work complies with the ethical standards of research and publishing.

Funding information

This work was supported by the National Natural Science Foun-
dation of China (62376252); Zhejiang Province Leading Geese Plan
(2025C02025, 2025C01056); Zhejiang Province Province-Land Synergy
Program (2025SDXT004-3).

Z. Ali et al. Computer Standards & Interfaces 96 (2026) 104070
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

References

[1] M. Luo, Y. Pei, M. Qiu, Cross domain heterogeneous signcryption scheme with
equality test for WBAN, Wirel. Pers. Commun. 130 (2) (2023) 1107–1122.

[2] H. Chen, J. Wang, X. Dong, C. Zhao, Security design of ECG telemonitor-
ing systems, in: 2020 International Conference on Computer Engineering and
Application, ICCEA, IEEE, 2020, pp. 707–711.

[3] T.V.N. Rao, L. Mothukuri, S. Bhavana, IoT networks for real-time healthcare
monitoring systems, in: Analyzing Current Digital Healthcare Trends using Social
Networks, IGI Global, 2024, pp. 143–158.

[4] J. Hassan, D. Shehzad, I. Ullah, F. Algarni, M.U. Aftab, M. Asghar Khan, M.I.
Uddin, A lightweight proxy Re-encryption approach with certificate-based and
incremental cryptography for fog-enabled E-healthcare, Secur. Commun. Netw.
2021 (2021) 1–17.

[5] A. Souri, Y. Zhao, M. Gao, A. Mohammadian, J. Shen, E. Al-Masri, A trust-
aware and authentication-based collaborative method for resource management
of cloud-edge computing in social internet of things, IEEE Trans. Comput. Soc.
Syst. (2023).

[6] H.A. Al Hamid, S.M.M. Rahman, M.S. Hossain, A. Almogren, A. Alamri, A
security model for preserving the privacy of medical big data in a healthcare
cloud using a fog computing facility with pairing-based cryptography, IEEE
Access 5 (2017) 22313–22328.

[7] D. Boneh, G. Di Crescenzo, R. Ostrovsky, G. Persiano, Public key encryption with
keyword search, in: C. Cachin, J.L. Camenisch (Eds.), Advances in Cryptology
- EUROCRYPT 2004, in: Lecture Notes in Computer Science, Springer, Berlin,
Heidelberg, 2004, pp. 506–522.

[8] G. Yang, C.H. Tan, Q. Huang, D.S. Wong, Probabilistic public key encryption
with equality test, in: J. Pieprzyk (Ed.), Topics in Cryptology - CT-RSA 2010,
in: Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2010, pp.
119–131.

[9] S. Ma, Identity-based encryption with outsourced equality test in cloud
computing, Inform. Sci. 328 (2016) 389–402.

[10] Z. Yang, D. He, L. Qu, Q. Ye, An efficient identity-based encryption with equality
test in cloud computing, IEEE Trans. Cloud Comput. (2023).

[11] M. Ramadan, S. Raza, Secure equality test technique using identity based
signcryption for telemedicine systems, IEEE Internet Things J. (2023).

[12] S. Ma, Z. Ye, Q. Huang, C. Jiang, Controllable forward secure identity-based
encryption with equality test in privacy-preserving text similarity analysis,
Inform. Sci. 660 (2024) 120099.

[13] H. Okano, K. Emura, T. Ishibashi, T. Ohigashi, T. Suzuki, Implementation of
a strongly robust identity-based encryption scheme over type-3 pairings, Int. J.
Netw. Comput. 10 (2) (2020) 174–188.

[14] C. Zhou, Z. Zhao, W. Zhou, Y. Mei, et al., Certificateless key-insulated generalized
signcryption scheme without bilinear pairings, Secur. Commun. Netw. 2017
(2017).

[15] A. ur Rahman, I. Ullah, M. Naeem, R. Anwar, H. Khattak, S. Ullah, et al., A
lightweight multi-message and multi-receiver heterogeneous hybrid signcryption
scheme based on hyper elliptic curve, Int. J. Adv. Comput. Sci. Appl. 9 (5)
(2018).

[16] A. Shamir, Identity-based cryptosystems and signature schemes, in: G.R. Blakley,
D. Chaum (Eds.), Advances in Cryptology, in: Lecture Notes in Computer Science,
Springer, Berlin, Heidelberg, 1985, pp. 47–53.
11
[17] S. Dong, Z. Zhao, B. Wang, W. Gao, S. Zhang, SM9 identity-based encryption
with designated-position fuzzy equality test, Electronics 13 (7) (2024) 1256.

[18] X.-J. Lin, Q. Wang, L. Sun, H. Qu, Identity-based encryption with equality test
and datestamp-based authorization mechanism, Theoret. Comput. Sci. 861 (2021)
117–132.

[19] J. Lu, H. Li, J. Huang, S. Ma, M.H.A. Au, Q. Huang, An Identity-Based Encryption
with Equality Test scheme for healthcare social apps, Comput. Stand. Interfaces
87 (2024) 103759.

[20] M. Ramadan, Y. Liao, F. Li, S. Zhou, H. Abdalla, IBEET-RSA: Identity-based
encryption with equality test over RSA for wireless body area networks, Mob.
Netw. Appl. 25 (2020) 223–233.

[21] Y. Sun, P. Chatterjee, Y. Chen, Y. Zhang, Efficient identity-based encryption with
revocation for data privacy in internet of things, IEEE Internet Things J. 9 (4)
(2022) 2734–2743, Conference Name: IEEE Internet of Things Journal.

[22] T.-T. Tsai, H.-Y. Lin, H.-C. Chang, An efficient revocable identity-based encryp-
tion with equality test scheme for the wireless body area network, J. Sens. 2022
(2022) e1628344, Publisher: Hindawi.

[23] R. Elhabob, Y. Zhao, I. Sella, H. Xiong, An efficient certificateless public key
cryptography with authorized equality test in IIoT, J. Ambient. Intell. Humaniz.
Comput. 11 (3) (2020) 1065–1083.

[24] S.S. Al-Riyami, K.G. Paterson, Certificateless public key cryptography, in: C.-S.
Laih (Ed.), Advances in Cryptology - ASIACRYPT 2003, in: Lecture Notes in
Computer Science, Springer, Berlin, Heidelberg, 2003, pp. 452–473.

[25] R. Elhabob, M. Taha, H. Xiong, M.K. Khan, S. Kumari, P. Chaudhary, Pairing-free
certificateless public key encryption with equality test for Internet of Vehicles,
Comput. Electr. Eng. 116 (2024) 109140.

[26] J. Tian, Y. Lu, J. Li, Lightweight searchable and equality-testable certificateless
authenticated encryption for encrypted cloud data, IEEE Trans. Mob. Comput.
23 (8) (2024) 8431–8446.

[27] R. Elhabob, Y. Zhao, I. Sella, H. Xiong, Efficient certificateless public key
cryptography with equality test for internet of vehicles, IEEE Access 7 (2019)
68957–68969.

[28] T. Wollinger, J. Pelzl, C. Paar, Cantor versus Harley: optimization and analysis
of explicit formulae for hyperelliptic curve cryptosystems, IEEE Trans. Comput.
54 (7) (2005) 861–872.

[29] I. Ullah, M.A. Khan, M.H. Alsharif, R. Nordin, An anonymous certificateless
signcryption scheme for secure and efficient deployment of Internet of vehicles,
Sustainability 13 (19) (2021) 10891.

[30] I. Ullah, N. Ul Amin, M. Zareei, A. Zeb, H. Khattak, A. Khan, S. Goudarzi,
A lightweight and provable secured certificateless signcryption approach for
crowdsourced IIoT applications, Symmetry 11 (11) (2019) 1386.

[31] X. Fan, T. Wollinger, G. Gong, Efficient explicit formulae for genus 3 hyperelliptic
curve cryptosystems over binary fields, IET Inf. Secur. 1 (2) (2007) 65–81.

[32] M.A. Khan, I.M. Qureshi, I. Ullah, S. Khan, F. Khanzada, F. Noor, An efficient and
provably secure certificateless blind signature scheme for flying ad-hoc network
based on multi-access edge computing, Electronics 9 (1) (2019) 30.

[33] H.-Y. Lin, RPCAE: a novel revocable proxy convertible authenticated encryption
scheme, Int. J. Inf. Secur. 14 (2015) 431–441.

[34] F. Li, P. Xiong, Practical secure communication for integrating wireless sensor
networks into the internet of things, IEEE Sens. J. 13 (10) (2013) 3677–3684.

[35] GitHub - JHUISI/charm: charm: A framework for rapidly prototyping cryp-
tosystems — github.com, 2025, https://github.com/JHUISI/charm. (Accessed 5
January 2025).

[36] PBC library - pairing-based cryptography - about — crypto.stanford.edu, 2025,
https://crypto.stanford.edu/pbc/. (Accessed 5 January 2025).

[37] GitHub - syncom/libg2hec: A genus 2 crypto C++ library — github.com, 2025,
https://github.com/syncom/libg2hec. (Accessed 5 January 2025).

[38] The GNU MP bignum library — gmplib.org, 2025, https://gmplib.org/. (Accessed
5 January 2025).

[39] GitHub - openssl/openssl: TLS/SSL and crypto library — github.com, 2025,
https://github.com/openssl/openssl. (Accessed 5 January 2025).

[40] NTL: A library for doing number theory — libntl.org, 2025, https://libntl.org/.
(Accessed 5 January 2025).

http://refhub.elsevier.com/S0920-5489(25)00099-6/sb1
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb1
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb1
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb2
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb2
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb2
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb2
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb2
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb3
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb3
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb3
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb3
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb3
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb4
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb4
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb4
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb4
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb4
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb4
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb4
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb5
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb5
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb5
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb5
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb5
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb5
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb5
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb6
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb6
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb6
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb6
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb6
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb6
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb6
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb7
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb7
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb7
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb7
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb7
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb7
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb7
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb8
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb8
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb8
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb8
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb8
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb8
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb8
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb9
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb9
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb9
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb10
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb10
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb10
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb11
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb11
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb11
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb12
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb12
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb12
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb12
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb12
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb13
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb13
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb13
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb13
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb13
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb14
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb14
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb14
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb14
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb14
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb15
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb15
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb15
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb15
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb15
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb15
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb15
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb16
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb16
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb16
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb16
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb16
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb17
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb17
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb17
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb18
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb18
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb18
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb18
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb18
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb19
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb19
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb19
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb19
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb19
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb20
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb20
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb20
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb20
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb20
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb21
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb21
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb21
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb21
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb21
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb22
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb22
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb22
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb22
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb22
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb23
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb23
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb23
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb23
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb23
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb24
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb24
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb24
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb24
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb24
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb25
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb25
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb25
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb25
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb25
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb26
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb26
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb26
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb26
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb26
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb27
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb27
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb27
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb27
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb27
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb28
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb28
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb28
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb28
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb28
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb29
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb29
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb29
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb29
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb29
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb30
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb30
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb30
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb30
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb30
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb31
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb31
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb31
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb32
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb32
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb32
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb32
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb32
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb33
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb33
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb33
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb34
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb34
http://refhub.elsevier.com/S0920-5489(25)00099-6/sb34
https://github.com/JHUISI/charm
https://crypto.stanford.edu/pbc/
https://github.com/syncom/libg2hec
https://gmplib.org/
https://github.com/openssl/openssl
https://libntl.org/

	Securing Wireless Body Area Network with lightweight certificateless signcryption scheme using equality test
	Introduction
	Related Work
	Contributions
	Paper Organization

	Preliminaries
	Hyperelliptic Curve
	Complexity Assumptions

	Framework and Security Model of CLS-ET
	Security Model

	Proposed Scheme
	Security Analysis
	Test Environment
	Measurement Tools
	Measurement Environment
	Measurement Technique

	Performance Analysis
	Computational Cost
	Communication Cost
	Property comparison

	Conclusion
	CRediT authorship contribution statement
	Ethical compliance
	Funding Information
	Declaration of competing interest
	Data availability
	References

